×

Critical exponent and sharp lifespan estimates for semilinear third-order evolution equations. (English) Zbl 07926852

MSC:

35L76 Higher-order semilinear hyperbolic equations
35L30 Initial value problems for higher-order hyperbolic equations
35B33 Critical exponents in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35B44 Blow-up in context of PDEs

References:

[1] F. D. M.Bezerra, A. N.Carvalho, and L. A.Santos, Well‐posedness for some third‐order evolution differential equations: a semigroup approach, J. Evol. Equ.22 (2022), no. 2, 53. · Zbl 1508.34068
[2] F. D. M.Bezerra and L. A.Santos, Fractional powers approach of operators for abstract evolution equations of third order in time, J. Differ. Equ.269 (2020), no. 7, 5661-5679. · Zbl 1468.34091
[3] H. O.Fattorini, The Cauchy problem, Encyclopedia of mathematics and its applications, Vol. 18, Addison‐Wesley Publishing Company, Reading, Massachusetts, 1983. · Zbl 1167.34300
[4] M.Bongarti, C.Sutthirut, and I.Lasiecka, Vanishing relaxation time dynamics of the Jordan Moore‐Gibson‐Thompson equation arising in nonlinear acoustics, J. Evol. Equ.21 (2021), 3553-3584. · Zbl 1480.35028
[5] B.Kaltenbacher, I.Lasiecka, and M. K.Pospieszalska, Well‐posedness and exponential decay of the energy in the nonlinear Jordan‐Moore‐Gibson‐Thompson equation arising in high intensity ultrasound, Math. Models Meth. Appl. Sci.22 (2012), no. 11, 1250035. · Zbl 1257.35131
[6] B.Kaltenbacher and V.Nikolić, The inviscid limit of third‐order linear and nonlinear acoustic equations, SIAM J. Appl. Math.81 (2021), no. 4, 1461-1482. · Zbl 1475.35282
[7] R.Racke and B.Said‐Houari, Global well‐posedness of the Cauchy problem for the 3D Jordan‐Moore‐Gibson‐Thompson equation, Commun. Contemp. Math.23 (2021), no. 7, 2050069. · Zbl 1476.35052
[8] B.Said‐Houari, Global existence for the Jordan‐Moore‐Gibson‐Thompson equation in Besov spaces, J. Evol. Equ.22 (2022), 32. · Zbl 1487.35253
[9] M.Escobedo and M. A.Herrero, Boundedness and blow up for a semilinear reaction‐diffusion system, J. Differ. Equ.89 (1991), no. 1, 176-202. · Zbl 0735.35013
[10] M.Escobedo and H. A.Levine, Critical blowup and global existence numbers for a weakly coupled system of reaction‐diffusion equations, Arch. Rational Mech. Anal.129 (1995), no. 1, 47-100. · Zbl 0822.35068
[11] H.Fujita, On the blowing up of solutions of the Cauchy problem for
[( {u}_t=\Delta u+{u}^{1+\alpha } \]\), J. Fac. Sci. Univ. Tokyo Sect.I (1966), no. 13, 109-124. · Zbl 0163.34002
[12] K.Fujiwara, M.Ikeda, and Y.Wakasugi, Lifespan of solutions for a weakly coupled system of semilinear heat equations, Tokyo J. Math.43 (2020), no. 1, 163-180. · Zbl 1439.35181
[13] M. R.Ebert, G.Girardi, and M.Reissig, Critical regularity of nonlinearities in semilinear classical damped wave equations, Math. Ann.378 (2020), no. 3‐4, 1311-1326. · Zbl 1450.35158
[14] M.Ikeda and T.Ogawa, Lifespan of solutions to the damped wave equation with a critical nonlinearity, J. Differ. Equ.261 (2016), no. 3, 1880-1903. · Zbl 1361.35114
[15] N.‐A.Lai and Y.Zhou, The sharp lifespan estimate for semilinear damped wave equation with Fujita critical power in higher dimensions, J. Math. Pures Appl.123 (2019), no. 8, 229-243. · Zbl 1411.35207
[16] T. T.Li and Y.Zhou, Breakdown of solutions to
[( \square u+{u}_t={\left|u\right|}^{1+\alpha } \]\), Discrete Contin. Dyn. Syst.1 (1995), no. 4, 503-520. · Zbl 0872.35067
[17] G.Todorova and B.Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differ. Equ.174 (2001), no. 2, 464-489. · Zbl 0994.35028
[18] Q. S.Zhang, A blow‐up result for a nonlinear wave equation with damping: the critical case, C. R. Acad. Sci. Paris Sér. I. Math.333 (2001), no. 2, 109-114. · Zbl 1056.35123
[19] M.D’Abbicco and M. R.Ebert, A new phenomenon in the critical exponent for structurally damped semi‐linear evolution equations, Nonlinear Anal.149 (2017), 1-40. · Zbl 1355.35015
[20] M.D’Abbicco, S.Lucente, and M.Reissig, Semi‐linear wave equations with effective damping, Chinese Ann. Math. Ser. B.34 (2013), no. 3, 345-380. · Zbl 1278.35150
[21] W. N.Do Nascimento, A.Palmieri, and M.Reissig, Semi‐linear wave models with power non‐linearity and scale‐invariant time‐dependent mass and dissipation, Math. Nachr.290 (2017), no. 11‐12, 1779-1805. · Zbl 1382.35166
[22] Y.Wakasugi, Small data global existence for the semilinear wave equation with space‐time dependent damping, J. Math. Anal. Appl.393 (2012), no. 1, 66-79. · Zbl 1246.35133
[23] M.Ikeda and M.Sobajima, Sharp upper bound for lifespan of solutions to some critical semilinear parabolic, dispersive and hyperbolic equations via a test function method, Nonlinear Anal.182 (2019), 57-74. · Zbl 1411.35174
[24] L.Rodino, Linear partial differential operators in Gevrey spaces, World Scientific Publishing Co Inc., River Edge, NJ, 1993. · Zbl 0869.35005
[25] D. T.Pham, M.Kainane Mezadek, and M.Reissig, Global existence for semi‐linear structurally damped
[( \sigma \]\)‐evolution models, J. Math. Anal. Appl.431 (2015), no. 1, 569-596. · Zbl 1327.35411
[26] M.Ikeda and Y.Wakasugi, Small‐data blow‐up of
[( {l}^2 \]\)‐solution for the nonlinear schrödinger equation without gauge invariance, Differ. Integral Equ.26 (2013), no. 11-12, 1275-1285. · Zbl 1313.35324
[27] H.Dietert and D.Gérard‐Varet, Well‐posedness of the Prandtl equations without any structural assumption, Ann. PDE5 (2019), no. 1, 8. · Zbl 1428.35355
[28] D.Gérard‐Varet and E.Dormy, On the ill‐posedness of the Prandtl equation, J. Amer. Math. Soc.23 (2010), no. 2, 591-609. · Zbl 1197.35204
[29] R.Ikehata, Asymptotic profiles for wave equations with strong damping, J. Differ. Equ.257 (2014), no. 6, 2159-2177. · Zbl 1297.35039
[30] R.Ikehata and H.Takeda, Asymptotic profiles of solutions for structural damped wave equations, J. Dynam. Differ. Equ.31 (2019), no. 1, 537-571. · Zbl 1437.35443
[31] H.Hajaiej, L.Molinet, T.Ozawa, and B.Wang, Necessary and sufficient conditions for the fractional Gagliardo‐Nirenberg inequalities and applications to Navier‐Stokes and generalized boson equations, Harmonic analysis and nonlinear partial differential equations, RIMS Kôkyûroku Bessatsu, Vol. B26, Research Institute for Mathematical Sciences, Kyoto, pp. 159-175, 2011. · Zbl 1270.42026
[32] M.D’Abbicco and K.Fujiwara, A test function method for evolution equations with fractional powers of the Laplace operator, Nonlinear Anal.202 (2021), 112114. · Zbl 1450.35264
[33] T. A.Dao and M.Reissig, Blow‐up results for semi‐linear structurally damped sigma‐evolution equations, Anomalies in PDE’s, D.Cicognani (ed.), A.Parmeggiani (ed.), and M.Reissig (ed.), (eds.), Springer INdAM Series, Springer, Berlin, 2020.
[34] T. A.Dao and M.Reissig,
[( {L}^1 \]\) estimates for oscillating integrals and their applications to semi‐linear models with
[( \sigma \]\)‐evolution like structural damping, Discrete Contin. Dyn. Syst.39 (2019), no. 9, 5431-5463. · Zbl 1418.35274
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.