×

Lifespan of solutions to the damped wave equation with a critical nonlinearity. (English) Zbl 1361.35114

The main result of this paper is an inequality of the form \(T(\varepsilon)\leq\exp(C\varepsilon^{-p})\) for the blow-up time for a mild solution of \[ u_{tt}-\Delta u + u_{t}=|u|^p, \] where the spatial domain is all of \(\mathbb R^n\), with \(n\geq 1\), \(p=1+2/n\), and the data have the form \((\varepsilon u_0, \varepsilon u_1)\), with \((u_0,u_1)\in H^1\times L^2\), \(u_0+u_1\in L^1\), and \(\int_{\mathbb R^n}(u_0+u_1)dx>0\). The method is similar to that of M. Kirane and M. Qafsaoui [Adv. Nonlinear Stud. 2, No. 1, 41–49 (2002; Zbl 1056.35020)] and Q. S. Zhang [C. R. Acad. Sci., Paris, Sér. I, Math. 333, No. 2, 109–114 (2001; Zbl 1056.35123)].

MSC:

35L71 Second-order semilinear hyperbolic equations
35B44 Blow-up in context of PDEs
35L15 Initial value problems for second-order hyperbolic equations
Full Text: DOI

References:

[1] D’Abbicco, M.; Lucente, S., A modified test function method for damped wave equations, Adv. Nonlinear Stud., 13, 867-892 (2013) · Zbl 1293.35176
[2] D’Abbicco, M.; Lucente, S.; Reissig, M., Semilinear wave equations with effective damping, Chin. Ann. Math. Ser. B, 34, 345-380 (2013) · Zbl 1278.35150
[3] Fujita, H., On the blowing up of solutions of the Cauchy problem for \(u_t = \Delta u + u^{1 + \alpha}\), J. Fac. Sci., Univ. Tokyo, Sect. I, 13, 109-124 (1966) · Zbl 0163.34002
[4] Georgiev, V.; Todorova, G., Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations, 109, 295-308 (1994) · Zbl 0803.35092
[5] Hayakawa, K., On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Jpn. Acad., 49, 503-505 (1973) · Zbl 0281.35039
[6] Hayashi, N.; Kaikina, E. I.; Naumkin, P. I., Damped wave equation with super critical nonlinearities, Differential Integral Equations, 17, 637-652 (2004) · Zbl 1224.35281
[7] Hayashi, N.; Kaikina, E. I.; Naumkin, P. I., On the critical nonlinear damped wave equation with large initial data, J. Math. Anal. Appl., 334, 1400-1425 (2007) · Zbl 1195.35220
[8] Hosono, T.; Ogawa, T., Large time behavior and \(L^p-L^q\) estimate of solutions of 2-dimensional nonlinear damped wave equations, J. Differential Equations, 203, 82-118 (2004) · Zbl 1049.35134
[10] Ikeda, M.; Wakasugi, Y., Small data blow-up of \(L^2\)-solution for the nonlinear Schrödinger equation without gauge invariance, Differential Integral Equations, 26, 1235-1434 (2013)
[11] Ikeda, M.; Wakasugi, Y., A note on the lifespan of solutions to the semilinear damped wave equation, Proc. Amer. Math. Soc., 143, 163-171 (2015) · Zbl 1310.35172
[12] Ikehata, R.; Miyaoka, Y.; Nakatake, T., Decay estimates of solutions for dissipative wave equations in \(R^N\) with lower power nonlinearities, J. Math. Soc. Japan, 56, 365-373 (2004) · Zbl 1056.35120
[13] Ikehata, R.; Tanizawa, K., Global existence of solutions for semilinear damped wave equations in \(R^N\) with noncompactly supported initial data, Nonlinear Anal., 61, 1189-1208 (2005) · Zbl 1073.35171
[14] Ikehata, R.; Todorova, G.; Yordanov, B., Critical exponent for semilinear wave equations with space-dependent potential, Funkcial. Ekvac., 52, 411-435 (2009) · Zbl 1191.35183
[15] Kirane, M.; Qafsaoui, M., Fujita’s exponent for a semilinear wave equation with linear damping, Adv. Nonlinear Stud., 2, 41-49 (2002) · Zbl 1056.35020
[16] Kuiper, H. J., Life span of nonnegative solutions to certain quasilinear parabolic Cauchy problems, Electr. J. Differ. Equ., 2003, 1-11 (2003) · Zbl 1036.35027
[17] Lee, T. Y.; Ni, W. M., Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem, Trans. Amer. Math. Soc., 333, 365-378 (1992) · Zbl 0785.35011
[18] Li, T. T.; Zhou, Y., Breakdown of solutions to \(\square u + u_t = | u |^{1 + \alpha}\), Discrete Contin. Dyn. Syst., 1, 503-520 (1995) · Zbl 0872.35067
[19] Lin, J.; Nishihara, K.; Zhai, J., Critical exponent for the semilinear wave equation with time-dependent damping, Discrete Contin. Dyn. Syst., 32, 4307-4320 (2012) · Zbl 1255.35058
[20] Matsumura, A., On the asymptotic behavior of solutions of semi-linear wave equations, Publ. RIMS, Kyoto Univ., 12, 169-189 (1976) · Zbl 0356.35008
[21] Narazaki, T., \(L^p-L^q\) estimates for damped wave equations and their applications to semi-linear problem, J. Math. Soc. Japan, 56, 585-626 (2004) · Zbl 1059.35073
[22] Nishihara, K., \(L^p-L^q\) estimates of solutions to the damped wave equation in 3-dimensional space and their application, Math. Z., 244, 631-649 (2003) · Zbl 1023.35078
[23] Nishihara, K., \(L^p-L^q\) estimates for the 3-D damped wave equation and their application to the semilinear problem, Sem. Notes Math. Sci., vol. 6, 69-83 (2003), Ibaraki Univ.
[24] Nishihara, K., Asymptotic behavior of solutions to the semilinear wave equation with time-dependent damping, Tokyo J. Math., 34, 327-343 (2011) · Zbl 1242.35174
[25] Ono, K., Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations, Discrete Contin. Dyn. Syst., 9, 651-662 (2003) · Zbl 1029.35180
[26] Pokhozhaev, S. I., On the existence and nonexistence of solutions of some quasilinear hyperbolic equations, Differ. Equ., 47, 1754-1762 (2011) · Zbl 1243.35126
[27] Pokhozhaev, S. I., On the dependence of the critical exponent of the nonlinear heat equation on the initial function, Differ. Equ., 47, 955-962 (2011) · Zbl 1227.35054
[28] Strauss, W. A., Nonlinear Wave Equations, CBMS Reg. Conf. Ser. Math. (1989), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0714.35003
[29] Sun, F., Life span of blow-up solutions for higher-order semilinear parabolic equations, Electr. J. Differ. Equ., 2010, 1-9 (2010) · Zbl 1190.35041
[30] Takamura, H.; Wakasa, K., The sharp upper bound of the lifespan of solutions to critical semilinear wave equations in high dimensions, J. Differential Equations, 251, 1157-1171 (2011) · Zbl 1230.35069
[31] Todorova, G.; Yordanov, B., Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174, 464-489 (2001) · Zbl 0994.35028
[32] Todorova, G.; Yordanov, B., Weighted \(L^2\)-estimates for dissipative wave equations with variable coefficients, J. Differential Equations, 246, 4497-4518 (2009) · Zbl 1173.35032
[33] Wakasugi, Y., Small data global existence for the semilinear wave equation with space-time dependent damping, J. Math. Anal. Appl., 393, 66-79 (2012) · Zbl 1246.35133
[34] Zhang, Qi S., Blow-up results for nonlinear parabolic equations on manifolds, Duke Math. J., 97, 515-539 (1999) · Zbl 0954.35029
[35] Zhang, Qi S., A blow-up result for a nonlinear wave equation with damping: the critical case, C. R. Math. Acad. Sci. Paris, Sér. I, 333, 109-114 (2001) · Zbl 1056.35123
[36] Zhou, Y., A blow-up result for a nonlinear wave equation with damping and vanishing initial energy in \(R^N\), Appl. Math. Lett., 18, 281-286 (2005) · Zbl 1071.35095
[37] Zhou, Y.; Han, W., Sharpness on the lower bound of the lifespan of solutions to nonlinear wave equations, Chin. Ann. Math. Ser. B, 32, 4, 521-526 (2011) · Zbl 1302.35262
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.