×

A new phenomenon in the critical exponent for structurally damped semi-linear evolution equations. (English) Zbl 1355.35015

Summary: In this paper, we find the critical exponent for global small data solutions to the Cauchy problem in \(\mathbb{R}^n\), for dissipative evolution equations with power nonlinearities \(| u |^p\) or \(| u_t |^p\), \[ u_{t t} +(- \Delta)^\delta u_t +(- \Delta)^\sigma u = \begin{cases} | u |^p, \\ | u_t |^p. \end{cases} \] Here \(\sigma, \delta \in \mathbb{N} \setminus \{0 \}\), with \(2 \delta \leq \sigma\). We show that the critical exponent for each of the two nonlinearities is related to each of the two possible asymptotic profiles of the linear part of the equation, which are described by the diffusion equations: \[ v_t +(- \Delta)^{\sigma - \delta} v = 0, w_t +(- \Delta)^\delta w = 0. \] The nonexistence of global solutions in the critical and subcritical cases is proved by using the test function method (under suitable sign assumptions on the initial data), and lifespan estimates are obtained. By assuming small initial data in Sobolev spaces, we prove the existence of global solutions in the supercritical case, up to some maximum space dimension  \(\overline{n}\), and we derive \(L^q\) estimates for the solution, for \(q \in(1, \infty)\). For \(\sigma = 2 \delta\), the result holds in any space dimension  \(n \geq 1\). The existence result also remains valid if \(\sigma\) and/or \(\delta\) are fractional.

MSC:

35B33 Critical exponents in context of PDEs
35R11 Fractional partial differential equations
35L15 Initial value problems for second-order hyperbolic equations
35L30 Initial value problems for higher-order hyperbolic equations
35L71 Second-order semilinear hyperbolic equations
35L76 Higher-order semilinear hyperbolic equations
35L82 Pseudohyperbolic equations
35B40 Asymptotic behavior of solutions to PDEs

References:

[1] Charão, R. C.; da Luz, C. R., Asymptotic properties for a semilinear plate equation in unbounded domains, J. Hyperbolic Differ. Equ., 6, 269-294 (2009) · Zbl 1182.35042
[2] Charão, R. C.; da Luz, C. R.; Ikehata, R., New decay rates for a problem of plate dynamics with fractional damping, J. Hyperbolic Differ. Equ., 10, 3, 563-575 (2013) · Zbl 1277.35052
[3] Charão, R. C.; da Luz, C. R.; Ikehata, R., Asymptotic behavior for abstract evolution differential equations of second order, J. Differential Equations, 259, 5017-5039 (2015) · Zbl 1326.35046
[4] Charão, R. C.; Horbach, J. L.; Ikehata, R., Optimal decay rates and asymptotic profile for the plate equation with structural damping, J. Math. Anal. Appl., 440, 529-560 (2016) · Zbl 1339.35043
[5] D’Abbicco, M., A benefit from the \(L^1\) smallness of initial data for the semilinear wave equation with structural damping, (Current Trends in Analysis and its Applications (2015)), 209-216, Proceedings of the \(9^{th}\) ISAAC Congress, Krakow. Eds V. Mityushev and M. Ruzhansky, http://www.springer.com/br/book/9783319125763 · Zbl 1327.35252
[6] D’Abbicco, M.; Ebert, M. R., Diffusion phenomena for the wave equation with structural damping in the \(L^p - L^q\) framework, J. Differential Equations, 256, 2307-2336 (2014) · Zbl 1288.35073
[7] D’Abbicco, M.; Ebert, M. R., An application of \(L^p - L^q\) decay estimates to the semilinear wave equation with parabolic-like structural damping, Nonlinear Anal., 99, 16-34 (2014) · Zbl 1284.35058
[8] D’Abbicco, M.; Ebert, M. R., A classification of structural dissipations for evolution operators, Math. Methods Appl. Sci., 39, 2558-2582 (2016) · Zbl 1350.35102
[9] D’Abbicco, M.; Ebert, M. R.; Picon, T., Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation, J. Pseudo-Diff. Oper. Appl., 7, 2, 261-293 (2016) · Zbl 1350.42045
[10] D’Abbicco, M.; Jannelli, E., A damping term for higher-order hyperbolic equations, Ann. Mat. Pura Appl., 195, 2, 557-570 (2016) · Zbl 1347.35146
[11] D’Abbicco, M.; Lucente, S., NLWE with a special scale-invariant damping in odd space dimension, Discrete Contin. Dyn. Syst., 312-319 (2015), AIMS Proceedings · Zbl 1339.35187
[12] D’Abbicco, M.; Lucente, S., The beam equation with nonlinear memory, Z. Angew. Math. Phys., 67, 60 (2016) · Zbl 1361.35116
[13] D’Abbicco, M.; Lucente, S.; Reissig, M., A shift in the critical exponent for semilinear wave equations with a not effective damping, J. Differential Equations, 259, 5040-5073 (2015) · Zbl 1329.35205
[14] D’Abbicco, M.; Reissig, M., Semilinear structural damped waves, Math. Methods Appl. Sci., 37, 1570-1592 (2014) · Zbl 1295.35324
[15] D’Ambrosio, L.; Lucente, S., Nonlinear liouville theorems for grushin and tricomi operators, J. Differential Equations, 123, 511-541 (2003) · Zbl 1040.35012
[16] Egorov, Yu. V.; Galaktionov, V. A.; Kondratiev, V. A.; Pohozaev, S. I., On the necessary conditions of existence to a quasilinear inequality in the half-space, C. R. Acad. Sci. Paris, Sér. I, 330, 93-98 (2000) · Zbl 0943.35110
[17] Galaktionov, V. A.; Mitidieri, E. L.; Pohozaev, S. I., (Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations. Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations, Monogr. Res. Notes Math. (2014), Chapman and Hall/CRC) · Zbl 1320.35002
[18] Georgiev, V., Weighted estimate for the wave equation, (Nonlinear Waves, Proceedings of the Fourth MSJ International Research Institute, Vol. 1 (1996), Hokkaido Univ), 71-80
[19] Georgiev, V.; Lindblad, H.; Sogge, C. D., Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math., 119, 1291-1319 (1997) · Zbl 0893.35075
[20] Ghisi, M.; Gobbino, M.; Haraux, A., Local and global smoothing effects for some linear hyperbolic equations with a strong dissipation, Trans. Amer. Math. Soc., 368, 3, 2039-2079 (2016) · Zbl 1342.35184
[21] Yang, Han; Milani, A., On the diffusion phenomenon of quasilinear hyperbolic waves, Bull. Sci. Math., 124, 5, 415-433 (2000) · Zbl 0959.35126
[22] Hsiao, L.; Tai-ping, Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservations with damping, Comm. Math. Phys., 143, 599-605 (1992) · Zbl 0763.35058
[23] Ikehata, R., Asymptotic profiles for wave equations with strong damping, J. Differential Equations, 257, 2159-2177 (2014) · Zbl 1297.35039
[24] Ikehata, R.; Mayaoka, Y.; Nakatake, T., Decay estimates of solutions for dissipative wave equations in \(R^N\) with lower power nonlinearities, J. Math. Soc. Japan, 56, 2, 365-373 (2004) · Zbl 1056.35120
[25] Ikehata, R.; Ohta, M., Critical exponents for semilinear dissipative wave equations in \(R^N\), J. Math. Anal. Appl., 269, 87-97 (2002) · Zbl 1006.35009
[26] John, F., Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 28, 235-268 (1979) · Zbl 0406.35042
[27] Karch, G., Selfsimilar profiles in large time asymptotics of solutions to damped wave equations, Studia Math., 143, 2, 175-197 (2000) · Zbl 0964.35022
[28] Kato, T., Blow-up of solutions of some nonlinear hyperbolic equations, Comm. Pure Appl. Math., 32, 501-505 (1980) · Zbl 0421.35053
[29] Marcati, P.; Nishihara, K., The \(L^p-L^q\) estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media, J. Differential Equations, 191, 445-469 (2003) · Zbl 1031.35031
[30] Mitidieri, E.; Pohozaev, S. I., The absence of global positive solutions to quasilinear elliptic inequalities, Dokl. Math., 57, 250-253 (1998) · Zbl 0976.35100
[31] Mitidieri, E.; Pohozaev, S. I., Nonexistence of positive solutions for a systems of quasilinear elliptic equations and inequalities in \(R^n\), Dokl. Math., 59, 1351-1355 (1999)
[32] Mitidieri, E.; Pohozaev, S. I., Non-existence of weak solutions for some degenerate elliptic and parabolic problems on \(R^n\), J. Evol. Equ., 1, 189-220 (2001) · Zbl 0988.35095
[33] Mitidieri, E.; Pohozaev, S. I., Nonexistence of Weak Solutions for Some Degenerate and Singular Hyperbolic Problems on \(R^n\), Proc. Steklov Inst. Math., 232, 240-259 (2001) · Zbl 1032.35138
[34] Mitidieri, E.; Pokhozhaev, S. I., Lifespan estimates for solutions of some evolution inequalities, Differential Equations, 45, 10, 1473-1484 (2009) · Zbl 1184.35075
[35] Miyachi, A., On some Fourier multipliers for \(H^p(R^n)\), J. Fac. Sci. Univ. Tokyo IA, 27, 157-179 (1980) · Zbl 0433.42019
[36] Miyachi, A., On some estimates for the wave equation in \(L^p\) and \(H^p\), J. Fac. Sci. Univ. Tokyo IA, 27, 331-354 (1980) · Zbl 0437.35042
[37] Narazaki, T., \(L^p - L^q\) estimates for damped wave equations and their applications to semilinear problem, J. Math. Soc. Japan, 56, 586-626 (2004) · Zbl 1059.35073
[38] Narazaki, T.; Reissig, M., \(L^1\) estimates for oscillating integrals related to structural damped wave models, (Cicognani, M.; Colombini, F.; Del Santo, D., Studies in Phase Space Analysis with Applications to PDEs. Studies in Phase Space Analysis with Applications to PDEs, Progress in Nonlinear Differential Equations and their Applications (2013), Birkhäuser), 215-258 · Zbl 1275.35011
[39] Nishihara, K., \(L^p - L^q\) estimates for solutions to the damped wave equations in 3-dimensional space and their applications, Math. Z., 244, 631-649 (2003) · Zbl 1023.35078
[40] Peral, J. C., \(L^p\) Estimates for the wave equation, J. Funct. Anal., 36, 114-145 (1980) · Zbl 0442.35017
[41] Trieu Duong, Pham; Kainane, M.; Reissig, M., Global existence for semi-linear structurally damped \(\sigma \)-evolution models, J. Math. Anal. Appl., 431, 569-596 (2015) · Zbl 1327.35411
[42] Segal, I. E., Quantization and dispersion for nonlinear relativistic equations, (Mathematical Theory of Elementary Particles (1966), M. I. T. Press: M. I. T. Press Cambridge, Mass), 79-108
[44] Sugitani, Y.; Kawashima, S., Decay estimates of solutions to a semi-linear dissipative plate equation, J. Hyperbolic Differ. Equ., 7, 471-501 (2010) · Zbl 1207.35229
[45] Todorova, G.; Yordanov, B., Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174, 464-489 (2001) · Zbl 0994.35028
[46] Zhang, Qi S., A blow-up result for a nonlinear wave equation with damping: the critical case, C. R. Acad. Sci. Paris Sér. I, 333, 109-114 (2001) · Zbl 1056.35123
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.