×

Infrared finite scattering theory: scattering states and representations of the BMS group. (English) Zbl 07926603

Summary: Any non-trivial scattering with massless fields in four spacetime dimensions will generically produce an “out” state with memory which gives rise to infrared divergences in the standard \(S\)-matrix. To obtain an infrared-finite scattering theory, one must suitably include states with memory. However, except in the case of QED with massive charged particles, asymptotic states with memory that have finite energy and angular momentum have not been constructed for more general theories (e.g. massless QED, Yang-Mills and quantum gravity). To this end, we construct direct-integral representations over the “Lorentz orbit” of a given memory and classify all “orbit space representations” that have well-defined energy and angular momentum. We thereby provide an explicit construction of a large supply of physical states with memory as well as the explicit action of the BMS charges all states. The construction of such states is a key step toward the formulation of an infrared-finite scattering theory. While we primarily focus on the quantum gravitational case, we outline how the methods presented in this paper can be applied to obtain representations of the Poincaré group with memory for more general quantum field theories.

MSC:

83Cxx General relativity
81Txx Quantum field theory; related classical field theories
81Uxx Quantum scattering theory

References:

[1] Haag, R., Quantum field theories with composite particles and asymptotic conditions, Phys. Rev., 112, 669, 1958 · Zbl 0085.43602 · doi:10.1103/PhysRev.112.669
[2] Ruelle, D., On the asymptotic condition in quantum field theory, Helv. Phys. Acta, 35, 147, 1962 · Zbl 0158.45702
[3] Lehmann, H.; Symanzik, K.; Zimmermann, W., On the formulation of quantized field theories, Nuovo Cim., 1, 205, 1955 · Zbl 0066.44006 · doi:10.1007/BF02731765
[4] Y.B. Zel’dovich and A.G. Polnarev, Radiation of gravitational waves by a cluster of superdense stars, Sov. Astron.18 (1974) 17 [INSPIRE].
[5] D. Christodoulou, Nonlinear nature of gravitation and gravitational wave experiments, Phys. Rev. Lett.67 (1991) 1486 [INSPIRE]. · Zbl 0990.83504
[6] A.G. Wiseman and C.M. Will, Christodoulou’s nonlinear gravitational wave memory: Evaluation in the quadrupole approximation, Phys. Rev. D44 (1991) R2945 [INSPIRE].
[7] L. Bieri and D. Garfinkle, An electromagnetic analogue of gravitational wave memory, Class. Quant. Grav.30 (2013) 195009 [arXiv:1307.5098] [INSPIRE]. · Zbl 1277.83034
[8] A. Ashtekar and K. Narain, Infrared Problems and Penrose’s Null Infinity, Syracuse University preprint, Syracuse, U.S.A. (1981).
[9] Ashtekar, A., Asymptotic Quantization of the Gravitational Field, Phys. Rev. Lett., 46, 573, 1981 · doi:10.1103/PhysRevLett.46.573
[10] A. Ashtekar, Asymptotic quantization. Based on 1984 Naples lectures, Monographs and Textbooks in Physical Science, Bibliopolis, Naples, Italy (1987) [INSPIRE]. · Zbl 0621.53064
[11] F. Bloch and A. Nordsieck, Note on the Radiation Field of the electron, Phys. Rev.52 (1937) 54 [INSPIRE]. · Zbl 0017.23504
[12] Yennie, DR; Frautschi, SC; Suura, H., The infrared divergence phenomena and high-energy processes, Annals Phys., 13, 379, 1961 · doi:10.1016/0003-4916(61)90151-8
[13] S. Weinberg, Infrared photons and gravitons, Phys. Rev.140 (1965) B516 [INSPIRE].
[14] Hannesdottir, H.; Schwartz, MD, Finite S matrix, Phys. Rev. D, 107, L021701, 2023 · doi:10.1103/PhysRevD.107.L021701
[15] D. Carney, L. Chaurette, D. Neuenfeld and G.W. Semenoff, Dressed infrared quantum information, Phys. Rev. D97 (2018) 025007 [arXiv:1710.02531] [INSPIRE].
[16] Semenoff, GW, Entanglement and the Infrared, Springer Proc. Math. Stat., 335, 151, 2019
[17] Danielson, DL; Satishchandran, G.; Wald, RM, Black holes decohere quantum superpositions, Int. J. Mod. Phys. D, 31, 2241003, 2022 · doi:10.1142/S0218271822410036
[18] D.L. Danielson, G. Satishchandran and R.M. Wald, Killing horizons decohere quantum superpositions, Phys. Rev. D108 (2023) 025007 [arXiv:2301.00026] [INSPIRE].
[19] S.E. Gralla and H. Wei, Decoherence from horizons: General formulation and rotating black holes, Phys. Rev. D109 (2024) 065031 [arXiv:2311.11461] [INSPIRE].
[20] D.L. Danielson, G. Satishchandran and R.M. Wald, Local Description of Decoherence of Quantum Superpositions by Black Holes and Other Bodies, arXiv:2407.02567 [INSPIRE].
[21] Carney, D.; Chaurette, L.; Neuenfeld, D.; Semenoff, G., On the need for soft dressing, JHEP, 09, 121, 2018 · Zbl 1398.81251 · doi:10.1007/JHEP09(2018)121
[22] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE]. · Zbl 1408.83003
[23] S. Pasterski, M. Pate and A.-M. Raclariu, Celestial Holography, in the proceedings of the Snowmass 2021, Seattle, U.S.A. (2021) [arXiv:2111.11392] [INSPIRE].
[24] Donnay, L., Celestial holography: An asymptotic symmetry perspective, Phys. Rept., 1073, 1, 2024 · Zbl 07880427 · doi:10.1016/j.physrep.2024.04.003
[25] S. Pasterski, A Chapter on Celestial Holography, arXiv:2310.04932 [INSPIRE]. · Zbl 1540.83018
[26] Kulish, PP; Faddeev, LD, Asymptotic conditions and infrared divergences in quantum electrodynamics, Theor. Math. Phys., 4, 745, 1970 · Zbl 0197.26201 · doi:10.1007/BF01066485
[27] T. Chen, J. Fröhlich and A. Pizzo, Infraparticle Scattering States in Non-Relativistic QED. I. The Bloch-Nordsieck Paradigm, Commun. Math. Phys.294 (2010) 761 [arXiv:0709.2493] [INSPIRE]. · Zbl 1208.81211
[28] T. Chen, J. Fröhlich and A. Pizzo, Infraparticle scattering states in nonrelativistic quantum electrodynamics. II. Mass shell properties, J. Math. Phys.50 (2009) 012103 [arXiv:0709.2812]. · Zbl 1189.81240
[29] Gabai, B.; Sever, A., Large gauge symmetries and asymptotic states in QED, JHEP, 12, 095, 2016 · Zbl 1390.83141 · doi:10.1007/JHEP12(2016)095
[30] Duch, P., Infrared problem in perturbative quantum field theory, Rev. Math. Phys., 33, 2150032, 2021 · Zbl 1508.81939 · doi:10.1142/S0129055X2150032X
[31] Prabhu, K., Conservation of asymptotic charges from past to future null infinity: Maxwell fields, JHEP, 10, 113, 2018 · Zbl 1402.83034 · doi:10.1007/JHEP10(2018)113
[32] D. Kapec, M. Perry, A.-M. Raclariu and A. Strominger, Infrared Divergences in QED, Revisited, Phys. Rev. D96 (2017) 085002 [arXiv:1705.04311] [INSPIRE].
[33] J. Fröhlich, G. Morchio and F. Strocchi, Infrared problem and spontaneous breaking of the Lorentz group in QED, Phys. Lett. B89 (1979) 61 [INSPIRE].
[34] K. Prabhu, G. Satishchandran and R.M. Wald, Infrared finite scattering theory in quantum field theory and quantum gravity, Phys. Rev. D106 (2022) 066005 [arXiv:2203.14334] [INSPIRE].
[35] Campiglia, M.; Eyheralde, R., Asymptotic U(1) charges at spatial infinity, JHEP, 11, 168, 2017 · Zbl 1383.81127 · doi:10.1007/JHEP11(2017)168
[36] Henneaux, M.; Troessaert, C., Asymptotic symmetries of electromagnetism at spatial infinity, JHEP, 05, 137, 2018 · Zbl 1391.81129 · doi:10.1007/JHEP05(2018)137
[37] Prabhu, K., Conservation of asymptotic charges from past to future null infinity: Maxwell fields, JHEP, 10, 113, 2018 · Zbl 1402.83034 · doi:10.1007/JHEP10(2018)113
[38] Prabhu, K., Conservation of asymptotic charges from past to future null infinity: Supermomentum in general relativity, JHEP, 03, 148, 2019 · Zbl 1414.83013 · doi:10.1007/JHEP03(2019)148
[39] M.M.A. Mohamed and J.A.V. Kroon, Asymptotic charges for spin-1 and spin-2 fields at the critical sets of null infinity, J. Math. Phys.63 (2022) 052502 [arXiv:2112.03890] [INSPIRE]. · Zbl 1508.83017
[40] M.M.A. Mohamed, K. Prabhu and J.A.V. Kroon, BMS-supertranslation charges at the critical sets of null infinity, J. Math. Phys.65 (2024) 032501 [arXiv:2311.07294] [INSPIRE]. · Zbl 1535.83035
[41] Sachs, R., Asymptotic symmetries in gravitational theory, Phys. Rev., 128, 2851, 1962 · Zbl 0114.21202 · doi:10.1103/PhysRev.128.2851
[42] Choi, S.; Kol, U.; Akhoury, R., Asymptotic Dynamics in Perturbative Quantum Gravity and BMS Supertranslations, JHEP, 01, 142, 2018 · Zbl 1384.83014
[43] Choi, S.; Akhoury, R., BMS Supertranslation Symmetry Implies Faddeev-Kulish Amplitudes, JHEP, 02, 171, 2018 · Zbl 1387.81346 · doi:10.1007/JHEP02(2018)171
[44] K. Prabhu and G. Satishchandran, Infrared finite scattering theory: Amplitudes and soft theorems, arXiv:2402.18637 [INSPIRE].
[45] Herdegen, A., Semidirect product of CCR and CAR algebras and asymptotic states in quantum electrodynamics, J. Math. Phys., 39, 1788, 1998 · Zbl 1001.81046 · doi:10.1063/1.532264
[46] McCarthy, PJ, Representations of the Bondi-Metzner-Sachs group II. Properties and classification of the representations, Proc. R. Soc. Lond. A, 333, 317, 1973 · Zbl 0351.22013 · doi:10.1098/rspa.1973.0065
[47] Wigner, EP, On Unitary Representations of the Inhomogeneous Lorentz Group, Annals Math., 40, 149, 1939 · JFM 65.1129.01 · doi:10.2307/1968551
[48] McCarthy, PJ, Representations of the Bondi-Metzner-Sachs group I. Determination of the representations, Proc. R. Soc. Lond. A, 330, 517, 1972 · Zbl 0351.22012 · doi:10.1098/rspa.1972.0157
[49] McCarthy, PJ, The Bondi-Metzner-Sachs group in the nuclear topology, Proc. R. Soc. Lond. A, 343, 489, 1975 · Zbl 0303.22011 · doi:10.1098/rspa.1975.0083
[50] Mautner, FI, The Completeness of the Irreducible Unitary Representations of a Locally Compact Group, Proc. Natl. Acad. Sci., 34, 52, 1948 · Zbl 0029.30502 · doi:10.1073/pnas.34.2.52
[51] Campiglia, M.; Laddha, A., Asymptotic symmetries of QED and Weinberg’s soft photon theorem, JHEP, 07, 115, 2015 · Zbl 1388.83199 · doi:10.1007/JHEP07(2015)115
[52] B.S. Kay and R.M. Wald, Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasifree States on Space-Times with a Bifurcate Killing Horizon, Phys. Rept.207 (1991) 49 [INSPIRE]. · Zbl 0861.53074
[53] A.M. Grant, K. Prabhu and I. Shehzad, The Wald-Zoupas prescription for asymptotic charges at null infinity in general relativity, Class. Quant. Grav.39 (2022) 085002 [arXiv:2105.05919] [INSPIRE]. · Zbl 1495.83015
[54] G. Satishchandran and R.M. Wald, Asymptotic behavior of massless fields and the memory effect, Phys. Rev. D99 (2019) 084007 [arXiv:1901.05942] [INSPIRE].
[55] Ashtekar, A., Asymptotic Quantization of the Gravitational Field, Phys. Rev. Lett., 46, 573, 1981 · doi:10.1103/PhysRevLett.46.573
[56] I. Gel’fand and M. Naimark, On the imbedding of normed rings into the ring of operators in Hilbert space, Mat. Sb.54 (1943) 197. · Zbl 0060.27006
[57] Segal, IE, Irreducible representations of operator algebras, Bull. Am. Math. Soc., 53, 73, 1947 · Zbl 0031.36001 · doi:10.1090/S0002-9904-1947-08742-5
[58] Strominger, A., On BMS Invariance of Gravitational Scattering, JHEP, 07, 152, 2014 · Zbl 1392.81215 · doi:10.1007/JHEP07(2014)152
[59] I.M. Gel’fand, M.I. Graev and N.Ya. Vilenkin, Integral Geometry and Representation Theory, Generalized Functions. Vol. 5, Academic Press, New York, U.S.A. (1966). · Zbl 0144.17202
[60] P.H. Ginsparg, Applied conformal field theory, in the proceedings of the Les Houches Summer School in Theoretical Physics: Fields, Strings, Critical Phenomena, Les Houches, France (1988) [hep-th/9108028] [INSPIRE].
[61] Bacry, H.; Kihlberg, A., Wavefunctions on homogeneous spaces, J. Math. Phys., 10, 2132, 1969 · Zbl 0191.27002 · doi:10.1063/1.1664813
[62] Kihlberg, A., Fields on a homogeneous space of the Poincaré group, Ann. Henri Poincaré A, 13, 57, 1970
[63] Shaw, R., The subgroup structure of the homogeneous Lorentz group, Quart. J. Math., 21, 101, 1970 · Zbl 0217.08703 · doi:10.1093/qmath/21.1.101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.