×

The Wald-Zoupas prescription for asymptotic charges at null infinity in general relativity. (English) Zbl 1495.83015

Summary: We use the formalism developed by R. M. Wald and A. Zoupas [Phys. Rev. D (3) 61, No. 8, 084027, 16 pp. (2000; Zbl 1136.83317)] to derive explicit covariant expressions for the charges and fluxes associated with the Bondi-Metzner-Sachs symmetries at null infinity in asymptotically flat spacetimes in vacuum general relativity. Our expressions hold in non-stationary regions of null infinity, are local and covariant, conformally-invariant, and are independent of the choice of foliation of null infinity and of the chosen extension of the symmetries away from null infinity. While similar expressions have appeared previously in the literature in Bondi-Sachs coordinates (to which we compare our own), such a choice of coordinates obscures these properties. Our covariant expressions can be used to obtain charge formulae in any choice of coordinates at null infinity. We also include detailed comparisons with other expressions for the charges and fluxes that have appeared in the literature: the Ashtekar-Streubel flux formula, the Komar formulae, and the linkage and twistor charge formulae. Such comparisons are easier to perform using our explicit expressions, instead of those which appear in the original work by Wald and Zoupas.

MSC:

83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
83C50 Electromagnetic fields in general relativity and gravitational theory
78A35 Motion of charged particles
22E70 Applications of Lie groups to the sciences; explicit representations
53C18 Conformal structures on manifolds
53C12 Foliations (differential geometric aspects)

Citations:

Zbl 1136.83317

References:

[1] Bondi, H.; van der Burg, M. G J.; Metzner, A. W K., Gravitational waves in general relativity: VII. Waves from axisymmetric isolated systems, Proc. R. Soc. A, 269, 21 (1962) · Zbl 0106.41903 · doi:10.1098/rspa.1962.0161
[2] Sachs, R. K., Gravitational waves in general relativity: VIII. Waves in asymptotically flat space-times, Proc. R. Soc. A, 270, 103 (1962) · Zbl 0101.43605 · doi:10.1098/rspa.1962.0206
[3] Troessaert, C., The BMS_4 algebra at spatial infinity, Class. Quantum Grav., 35 (2018) · Zbl 1390.83074 · doi:10.1088/1361-6382/aaae22
[4] Prabhu, K., Conservation of asymptotic charges from past to future null infinity: supermomentum in general relativity, J. High Energy Phys. (2019) · Zbl 1414.83013 · doi:10.1007/jhep03(2019)148
[5] Prabhu, K.; Shehzad, I., Conservation of asymptotic charges from past to future null infinity: Lorentz charges in general relativity (2021) · Zbl 1522.83029
[6] He, T.; Lysov, V.; Mitra, P.; Strominger, A., BMS supertranslations and Weinberg’s soft graviton theorem, J. High Energy Phys. (2015) · Zbl 1388.83261 · doi:10.1007/jhep05(2015)151
[7] Strominger, A.; Zhiboedov, A., Gravitational memory, BMS supertranslations and soft theorems, J. High Energy Phys. (2016) · Zbl 1388.83072 · doi:10.1007/jhep01(2016)086
[8] Kapec, D.; Lysov, V.; Pasterski, S.; Strominger, A., Higher-dimensional supertranslations and Weinberg’s soft graviton theorem, Ann. Math. Sci. Appl., 2, 69 (2017) · Zbl 1382.83087 · doi:10.4310/amsa.2017.v2.n1.a2
[9] Avery, S. G.; Schwab, B. U W., Burg-Metzner-Sachs symmetry, string theory, and soft theorems, Phys. Rev. D, 93 (2016) · doi:10.1103/physrevd.93.026003
[10] Campiglia, M.; Laddha, A., Asymptotic symmetries of gravity and soft theorems for massive particles, J. High Energy Phys. (2015) · Zbl 1388.83095 · doi:10.1007/jhep12(2015)094
[11] Campoleoni, A.; Francia, D.; Heissenberg, C., On higher-spin supertranslations and superrotations, J. High Energy Phys. (2017) · Zbl 1380.81389 · doi:10.1007/jhep05(2017)120
[12] Pasterski, S.; Strominger, A.; Zhiboedov, A., New gravitational memories, J. High Energy Phys. (2016) · Zbl 1390.83024 · doi:10.1007/jhep12(2016)053
[13] Hollands, S.; Ishibashi, A.; Wald, R. M., BMS supertranslations and memory in four and higher dimensions, Class. Quantum Grav., 34 (2017) · Zbl 1373.83033 · doi:10.1088/1361-6382/aa777a
[14] Mao, P.; Ouyang, H., Note on soft theorems and memories in even dimensions, Phys. Lett. B, 774, 715 (2017) · Zbl 1403.81040 · doi:10.1016/j.physletb.2017.08.064
[15] Pate, M.; Raclariu, A-M; Strominger, A., Gravitational memory in higher dimensions, J. High Energy Phys. (2018) · Zbl 1395.83100 · doi:10.1007/jhep06(2018)138
[16] Chatterjee, A.; Lowe, D. A., BMS symmetry, soft particles and memory, Class. Quantum Grav., 35 (2018) · Zbl 1391.83011 · doi:10.1088/1361-6382/aab5cc
[17] Hawking, S. W.; Perry, M. J.; Strominger, A., Soft hair on black holes, Phys. Rev. Lett., 116 (2016) · doi:10.1103/physrevlett.116.231301
[18] Strominger, A.; Brink, L.; Mukhanov, V.; Rabinovici, E.; Phua, K. K., Black hole information revisited, In Jacob Bekenstein, 109-117 (2019), Singapore: World Scientific, Singapore
[19] Hawking, S. W.; Perry, M. J.; Strominger, A., Superrotation charge and supertranslation hair on black holes, J. High Energy Phys. (2017) · Zbl 1380.83143 · doi:10.1007/jhep05(2017)161
[20] Flanagan, É. É., An order-unity correction to Hawking radiation (2021)
[21] Wald, R. M.; Zoupas, A., A general definition of ‘conserved quantities’ in general relativity and other theories of gravity, Phys. Rev. D, 61 (2000) · Zbl 1136.83317 · doi:10.1103/physrevd.61.084027
[22] Flanagan, É. É.; Nichols, D. A., Conserved charges of the extended Bondi-Metzner-Sachs algebra, Phys. Rev. D, 95 (2017) · doi:10.1103/physrevd.95.044002
[23] Dray, T.; Streubel, M., Angular momentum at null infinity, Class. Quantum Grav., 1, 15 (1984) · Zbl 1136.83316 · doi:10.1088/0264-9381/1/1/005
[24] Barnich, G.; Troessaert, C., BMS charge algebra, J. High Energy Phys. (2011) · Zbl 1306.83002 · doi:10.1007/jhep12(2011)105
[25] Chrusciel, P. T.; Jezierski, J.; Kijowski, J., Hamiltonian Field Theory in the Radiating Regime (2002), New York: Springer, New York · Zbl 1002.83005
[26] Wald, R. M., General Relativity (1984), Chicago, IL: University of Chicago Press, Chicago, IL · Zbl 0549.53001
[27] Geroch, R.; Esposito, F. P.; Witten, L., Asymptotic Structure of Space-Time (1977), New York: Plenum, New York
[28] Bieri, L., Solutions of the Einstein vacuum equations, Extensions of the Stability Theorem of the Minkowski Space in General Relativity (2009), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1172.83001
[29] Ashtekar, A.; Xanthopoulos, B. C., Isometries compatible with asymptotic flatness at null infinity: a complete description, J. Math. Phys., 19, 2216 (1978) · Zbl 0425.53036 · doi:10.1063/1.523556
[30] Flanagan, É. É.; Prabhu, K.; Shehzad, I., Extensions of the asymptotic symmetry algebra of general relativity, J. High Energy Phys. (2020) · Zbl 1442.83007 · doi:10.1007/jhep01(2020)002
[31] Bonga, B.; Prabhu, K., BMS-like symmetries in cosmology, Phys. Rev. D, 102 (2020) · doi:10.1103/physrevd.102.104043
[32] Kapec, D.; Lysov, V.; Pasterski, S.; Strominger, A., Semiclassical Virasoro symmetry of the quantum gravity \(####\)-matrix, J. High Energy Phys. (2014) · doi:10.1007/jhep08(2014)058
[33] Barnich, G.; Troessaert, C., Supertranslations call for superrotations, p 010 (2010)
[34] Campiglia, M.; Laddha, A., New symmetries for the gravitational S-matrix, J. High Energy Phys. (2015) · Zbl 1388.83094 · doi:10.1007/jhep04(2015)076
[35] Campiglia, M.; Peraza, J., Generalized BMS charge algebra, Phys. Rev. D, 101 (2020) · doi:10.1103/physrevd.101.104039
[36] Compère, G.; Fiorucci, A.; Ruzziconi, R.; Compère, G.; Fiorucci, A.; Ruzziconi, R., Superboost transitions, refraction memory and super-Lorentz charge algebra. Erratum to: superboost transitions, refraction memory and super-Lorentz charge algebra, J. High Energy Phys.. J. High Energy Phys. (2020) · Zbl 1436.83005 · doi:10.1007/jhep04(2020)172
[37] Bonga, B.; Grant, A. M.; Prabhu, K., Angular momentum at null infinity in Einstein-Maxwell theory, Phys. Rev. D, 101 (2020) · doi:10.1103/physrevd.101.044013
[38] Burnett, G. A.; Wald, R. M., A conserved current for perturbations of Einstein-Maxwell space-times, Proc. R. Soc. A, 430, 57 (1990) · Zbl 0705.53038 · doi:10.1098/rspa.1990.0080
[39] Lee, J.; Wald, R. M., Local symmetries and constraints, J. Math. Phys., 31, 725 (1990) · Zbl 0704.70013 · doi:10.1063/1.528801
[40] Iyer, V.; Wald, R. M., Some properties of the Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D, 50, 846 (1994) · doi:10.1103/physrevd.50.846
[41] Prabhu, K., The first law of black hole mechanics for fields with internal gauge freedom, Class. Quantum Grav., 34 (2017) · Zbl 1358.83058 · doi:10.1088/1361-6382/aa536b
[42] Geroch, R.; Winicour, J., Linkages in general relativity, J. Math. Phys., 22, 803 (1981) · Zbl 0479.70004 · doi:10.1063/1.524987
[43] Ashtekar, A.; Streubel, M., Symplectic geometry of radiative modes and conserved quantities at null infinity, Proc. R. Soc. A, 376, 585 (1981) · doi:10.1098/rspa.1981.0109
[44] Tamburino, L. A.; Winicour, J. H., Gravitational fields in finite and conformal Bondi frames, Phys. Rev., 150, 1039 (1966) · doi:10.1103/physrev.150.1039
[45] Jezierski, J., Bondi mass in classical field theory, Acta Phys. Polon. B, 29, 667 (1998) · Zbl 0988.83025
[46] Sachs, R., Asymptotic symmetries in gravitational theory, Phys. Rev., 128, 2851 (1962) · Zbl 0114.21202 · doi:10.1103/physrev.128.2851
[47] Sachs, R. K., On the characteristic initial value problem in gravitational theory, J. Math. Phys., 3, 908 (1962) · Zbl 0111.42202 · doi:10.1063/1.1724305
[48] Winicour, J., Affine-null metric formulation of Einstein’s equations, Phys. Rev. D, 87 (2013) · doi:10.1103/physrevd.87.124027
[49] Newman, E. T.; Unti, T. W J., Behavior of asymptotically flat empty spaces, J. Math. Phys., 3, 891 (1962) · Zbl 0113.21006 · doi:10.1063/1.1724303
[50] Thorne, A., Asymptotic expansions and Bondi positivity in higher dimensional relativity, MPhil Thesis (2013)
[51] Hollands, S.; Thorne, A., Bondi mass cannot become negative in higher dimensions, Commun. Math. Phys., 333, 1037 (2015) · Zbl 1308.83059 · doi:10.1007/s00220-014-2096-8
[52] Hou, S.; Zhu, Z-H, ‘Conserved charges’ of the Bondi-Metzner-Sachs algebra in the Brans-Dicke theory, Chin. Phys. C, 45 (2021) · doi:10.1088/1674-1137/abd087
[53] Chandrasekaran, V.; Flanagan, É. É.; Prabhu, K., Symmetries and charges of general relativity at null boundaries, J. High Energy Phys. (2018) · Zbl 1404.83016 · doi:10.1007/jhep11(2018)125
[54] Chandrasekaran, V.; Prabhu, K., Symmetries, charges and conservation laws at causal diamonds in general relativity, J. High Energy Phys. (2019) · Zbl 1427.83007 · doi:10.1007/jhep10(2019)229
[55] Prabhu, K.; Shehzad, I., Asymptotic symmetries and charges at spatial infinity in general relativity, Class. Quantum Grav., 37 (2020) · Zbl 1478.83050 · doi:10.1088/1361-6382/ab954a
[56] Ferko, C.; Satishchandran, G.; Sethi, S., Gravitational memory and compact extra dimensions (2021)
[57] Newman, E.; Penrose, R.; Newman, E.; Penrose, R., An approach to gravitational radiation by a method of spin coefficients. Errata: an approach to gravitational radiation by a method of spin coefficients, J. Math. Phys.. J. Math. Phys., 4, 998 (1963) · Zbl 0108.40905 · doi:10.1063/1.1704025
[58] Geroch, R.; Held, A.; Penrose, R., A space‐time calculus based on pairs of null directions, J. Math. Phys., 14, 874 (1973) · Zbl 0875.53014 · doi:10.1063/1.1666410
[59] Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E., Exact Solutions of Einstein’s Field Equations (2009), Cambridge: Cambridge University Press, Cambridge · Zbl 1179.83005
[60] Penrose, R.; Rindler, W., Spinors and Space-Time (1988), Cambridge: Cambridge University Press, Cambridge
[61] Penrose, R.; Rindler, W., Spinors and Space-Time (1988), Cambridge: Cambridge University Press, Cambridge
[62] Kesavan, A., Asymptotic structure of space-time with a positive cosmological constant, PhD Thesis (2016)
[63] Komar, A., Covariant conservation laws in general relativity, Phys. Rev., 113, 934 (1959) · Zbl 0086.22103 · doi:10.1103/physrev.113.934
[64] Winicour, J., Some total invariants of asymptotically flat space‐times, J. Math. Phys., 9, 861 (1968) · Zbl 0169.57702 · doi:10.1063/1.1664652
[65] Ashtekar, A.; Winicour, J., Linkages and Hamiltonians at null infinity, J. Math. Phys., 23, 2410 (1982) · Zbl 0497.53061 · doi:10.1063/1.525283
[66] Penrose, R., Quasi-local mass and angular momentum in general relativity, Proc. R. Soc. A, 381, 53 (1982) · doi:10.1098/rspa.1982.0058
[67] Shaw, W. T., Symplectic geometry of null infinity and two-surface twistors, Class. Quantum Grav., 1, L33 (1984) · doi:10.1088/0264-9381/1/4/001
[68] Ashtekar, A.; Magnon, A., From i^0 to the 3 + 1 description of spatial infinity, J. Math. Phys., 25, 2682 (1984) · Zbl 0559.53044 · doi:10.1063/1.526500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.