×

Sharp Sobolev and Adams-Trudinger-Moser embeddings on weighted Sobolev spaces and their applications. (English) Zbl 07920510

Summary: We derive sharp Sobolev embeddings on a class of Sobolev spaces with potential weights without assuming any boundary conditions. Moreover, we consider the Adams-type inequalities for the borderline Sobolev embedding into the exponential class with a sharp constant. As applications, we prove that the associated elliptic equations with nonlinearities in both forms of polynomial and exponential growths admit nontrivial solutions.

MSC:

35J20 Variational methods for second-order elliptic equations
35J25 Boundary value problems for second-order elliptic equations
35J50 Variational methods for elliptic systems

References:

[1] D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. (2) 128 (1988), no. 2, 385-398. · Zbl 0672.31008
[2] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed., Pure Appl. Math. (Amsterdam) 140, Elsevier/Academic, Amsterdam, 2003. · Zbl 1098.46001
[3] Adimurthi, J. M. do Ó and K. Tintarev, Cocompactness and minimizers for inequalities of Hardy-Sobolev type involving N-Laplacian, NoDEA Nonlinear Differential Equations Appl. 17 (2010), no. 4, 467-477. · Zbl 1200.35139
[4] D. Bonheure, E. Serra and M. Tarallo, Symmetry of extremal functions in Moser-Trudinger inequalities and a Hénon type problem in dimension two, Adv. Differential Equations 13 (2008), no. 1-2, 105-138. · Zbl 1173.35044
[5] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2010. · Zbl 1218.46002
[6] H. Brezis and F. Browder, Partial differential equations in the 20th century, Adv. Math. 135 (1998), no. 1, 76-144. · Zbl 0915.01011
[7] X. Cabré and X. Ros-Oton, Sobolev and isoperimetric inequalities with monomial weights, J. Differential Equations 255 (2013), no. 11, 4312-4336. · Zbl 1293.46018
[8] L. Chen, G. Lu and M. Zhu, Sharp Trudinger-Moser inequality and ground state solutions to quasi-linear Schrödinger equations with degenerate potentials in \mathbb{R}^n, Adv. Nonlinear Stud. 21 (2021), no. 4, 733-749. · Zbl 1479.35264
[9] L. Chen, G. Lu and M. Zhu, Existence of extremals for Trudinger-Moser inequalities involved with a trapping potential, Calc. Var. Partial Differential Equations 62 (2023), no. 5, Paper No. 150. · Zbl 1514.35181
[10] L. Chen, B. Wang and M. Zhu, Improved fractional Trudinger-Moser inequalities on bounded intervals and the existence of their extremals, Adv. Nonlinear Stud. 23 (2023), no. 1, Paper No. 20220067. · Zbl 1527.46020
[11] P. Clément, D. G. de Figueiredo and E. Mitidieri, Quasilinear elliptic equations with critical exponents, Topol. Methods Nonlinear Anal. 7 (1996), no. 1, 133-170. · Zbl 0939.35072
[12] J. F. de Oliveira and J. M. do Ó, Trudinger-Moser type inequalities for weighted Sobolev spaces involving fractional dimensions, Proc. Amer. Math. Soc. 142 (2014), no. 8, 2813-2828. · Zbl 1311.46031
[13] J. M. do Ó and J. F. de Oliveira, Concentration-compactness and extremal problems for a weighted Trudinger-Moser inequality, Commun. Contemp. Math. 19 (2017), no. 1, Article ID 1650003. · Zbl 1368.46034
[14] J. M. do Ó, A. C. Macedo and J. F. de Oliveira, A sharp Adams-type inequality for weighted Sobolev spaces, Q. J. Math. 71 (2020), no. 2, 517-538. · Zbl 1456.46029
[15] M. Dong, N. Lam and G. Lu, Sharp weighted Trudinger-Moser and Caffarelli-Kohn-Nirenberg inequalities and their extremal functions, Nonlinear Anal. 173 (2018), 75-98. · Zbl 1397.46027
[16] M. Dong and G. Lu, Best constants and existence of maximizers for weighted Trudinger-Moser inequalities, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Article ID 88. · Zbl 1364.46026
[17] M. Gazzini and E. Serra, The Neumann problem for the Hénon equation, trace inequalities and Steklov eigenvalues, Ann. Inst. H. Poincaré C Anal. Non Linéaire 25 (2008), no. 2, 281-302. · Zbl 1138.35024
[18] D. Guedes de Figueiredo, E. M. dos Santos and O. H. Miyagaki, Sobolev spaces of symmetric functions and applications, J. Funct. Anal. 261 (2011), no. 12, 3735-3770. · Zbl 1232.46032
[19] P. Gurka and D. Hauer, More insights into the Trudinger-Moser inequality with monomial weight, Calc. Var. Partial Differential Equations 60 (2021), no. 1, Paper No. 16. · Zbl 1469.46031
[20] M. Ishiwata, M. Nakamura and H. Wadade, On the sharp constant for the weighted Trudinger-Moser type inequality of the scaling invariant form, Ann. Inst. H. Poincaré C Anal. Non Linéaire 31 (2014), no. 2, 297-314. · Zbl 1311.46034
[21] A. Kufner and L.-E. Persson, Weighted Inequalities of Hardy Type, World Scientific, River Edge, 2003. · Zbl 1065.26018
[22] N. Lam, G. Lu and L. Zhang, Sharp singular Trudinger-Moser inequalities under different norms, Adv. Nonlinear Stud. 19 (2019), no. 2, 239-261. · Zbl 1421.35007
[23] V. Maz’ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Grundlehren Math. Wiss. 342, Springer, Heidelberg, 2011. · Zbl 1217.46002
[24] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077-1092. · Zbl 0203.43701
[25] W. M. Ni, A nonlinear Dirichlet problem on the unit ball and its applications, Indiana Univ. Math. J. 31 (1982), no. 6, 801-807. · Zbl 0515.35033
[26] B. Opic and A. Kufner, Hardy-Type Inequalities, Pitman Res. Notes Math. Ser. 219, Longman Scientific & Technical, Harlow, 1990. · Zbl 0698.26007
[27] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149-162. · Zbl 0356.35028
[28] C. Tarsi, Adams’ inequality and limiting Sobolev embeddings into Zygmund spaces, Potential Anal. 37 (2012), no. 4, 353-385. · Zbl 1279.46025
[29] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483. · Zbl 0163.36402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.