×

Adams’ inequality and limiting Sobolev embeddings into Zygmund spaces. (English) Zbl 1279.46025

The author exhibits sharp embedding constants for Sobolev spaces of any order into Zygmund spaces, obtained as the product of sharp embedding constants for second-order Sobolev spaces into Lorentz spaces. One of the excellent results reads as follows. Let \(n> 2\), \(q> 1\), and \(\Omega\) be a bounded domain in \(\mathbb{R}^n\). Then, the following embedding holds: \[ \begin{gathered} W^2 L^{n/2,q}(\Omega)\cap W^1_0 L^{n/2,q}(\Omega)\to Z^{q-1/q}(\Omega),\text{ namely,}\\ \| u\|_{Z^{q-1/q}}\leq \gamma_{n,2}\|\Delta u\|_{n/2, q}\end{gathered}\tag{1} \] for any \(u\in W^2 L^{n/2,q}(\Omega)\cap W^1_0 L^{n/2,q}(\Omega)\), where \(\gamma_{n,2}= \omega^{{-2\over n}}_n[n(n-2)]^{-1}\) and \(\omega_n= \pi^{{n\over 2}}/\Gamma({n\over 2}+ 1)\) is the volume of the unit ball in \(\mathbb{R}^n\). Moreover, the constant appearing in equation (1) is sharp. As an easy consequence of this result, the author then gives a new proof of Adams’ inequality, which holds under the weaker hypothesis of homogeneous Navier boundary conditions.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
Full Text: DOI

References:

[1] Adimurthi, D.R., Druet, O.: Blow up analisys in dimension 2 and a sharp form of Trudinger–Moser inequality. Comm. in P.D.E. 29, 295–322 (2004) · Zbl 1076.46022 · doi:10.1081/PDE-120028854
[2] Adams, D.R.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. 128, 385–398 (1988) · Zbl 0672.31008 · doi:10.2307/1971445
[3] Alberico, A.: Moser type inequalities for higher-order derivatives in Lorentz spaces. Potential Anal. 28, 389–400 (2008) · Zbl 1152.46019 · doi:10.1007/s11118-008-9085-5
[4] Alvino, A.: Sulla diseguaglianza di Sobolev in spazi di Lorentz. Boll. Unione. Mat. Ital. A 14, 148–156 (1977) · Zbl 0352.46020
[5] Bennett, C., Rudnick, K.: On Lorentz–Zygmund spaces. Diss. Math. 175, 1–72 (1980) · Zbl 0456.46028
[6] Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics, vol. 129. Boston Academic Press, Inc. (1988) · Zbl 0647.46057
[7] Brezis, H., Merle, F.: Uniform estimates and blow-up behavior for solutions of {\(\Delta\)}u=V(x)e u in two dimensions. Comm. in P.D.E. 16, 1223–1253 (1991) · Zbl 0746.35006 · doi:10.1080/03605309108820797
[8] Brezis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings. Comm. in P.D.E. 5, 773–789 (1980) · Zbl 0437.35071 · doi:10.1080/03605308008820154
[9] Cassani, D., Ruf, B., Tarsi, C.: Best constants in a borderline case of second order Moser-type inequalities. Ann. Inst. Henri Poincaré 27, 73–93 (2010) · Zbl 1194.46048 · doi:10.1016/j.anihpc.2009.07.006
[10] Cassani, D., Ruf, B., Tarsi, C.: Best constants for Moser type inequalities in Zygmund spaces. Mat. Contemp. 36, 79–90 (2009) · Zbl 1196.46023
[11] Cianchi, A.: Symmetrization and second-order Sobolev inequalities. Ann. Mat. Pura Appl. 183, 45–77 (2004) · Zbl 1223.46033 · doi:10.1007/s10231-003-0080-6
[12] Cwikel, M., Pustylnik, E.: Sobolev type embeddings in the limiting case. J. Fourier Anal. Appl. 4, 433–446 (1998) · Zbl 0930.46027 · doi:10.1007/BF02498218
[13] Edmunds, D.E., Kerman, R., Pick, L.: Optimal Sobolev imbeddings involving rearrangement–invariant quasinorms. J. Funct. Anal. 170, 307–355 (2000) · Zbl 0955.46019 · doi:10.1006/jfan.1999.3508
[14] Gazzola, F., Grunau, H.C., Sweers, G.: Optimal Sobolev and Hardy–Rellich constants under Navier boundary conditions. Ann. Mat. Pura Appl. 189(4), 475–486 (2010) · Zbl 1202.46038
[15] Ge, Y.: Sharp Sobolev inequalities in critical dimesions. Mich. Math. J. 51, 27–45 (2003) · Zbl 1195.35132 · doi:10.1307/mmj/1049832891
[16] Hansson, K.: Imbedding theorems of Sobolev type in potential theory. Math. Scand. 45, 77–102 (1979) · Zbl 0437.31009
[17] Hunt, R.A.: On L(p, q) spaces. Enseign. Math. 2, 249–276 (1966) · Zbl 0181.40301
[18] Kawohl, B.: Rearrangements and Convexity of Level Sets in PDE. Lecture Notes in Mathematics, vol. 1150. Springer, Berlin (1985) · Zbl 0593.35002
[19] Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case, part 1. Rev. Mat. Iberoam. 1, 145–201 (1985) · Zbl 0704.49005 · doi:10.4171/RMI/6
[20] Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/71) · Zbl 0213.13001 · doi:10.1512/iumj.1971.20.20101
[21] Pohozaev, S.I.: The Sobolev embedding in the case pl=n. In: Proceedings of the Technical Scientific Conference on Advances of Scientific Research 1964–1965. Mathematics Section, pp. 158–170, Moskov. Energet. Inst., Moscow (1965)
[22] Talenti, G.: Elliptic equations and rearrangements. Ann. Sc. Norm. Super. Pisa Cl. Sci. 3, 697–718 (1976) · Zbl 0341.35031
[23] Trudinger, N.S.: On embedding into Orlicz space and some applications. J. Math. Mech. 17, 473–484 (1967) · Zbl 0163.36402
[24] Van der Vorst, R.C.A.M.: Best constant for the embedding of the space $H\(\backslash\)sp 2\(\backslash\)cap H\(\backslash\)sp 1\(\backslash\)sb 0(\(\backslash\)Omega)$ into $L\(\backslash\)sp {2N/(N-4)}(\(\backslash\)Omega)$ . Differ. Integr. Equ. 6, 259–276 (1993) · Zbl 0801.46033
[25] Yudovich, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. Dokl. Akad. Nauk SSSR 138, 804–808 (1961). English tranlation in Sov. Math. Dokl. 2, 746–749 (1961)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.