×

More insights into the Trudinger-Moser inequality with monomial weight. (English) Zbl 1469.46031

Summary: In this paper we present a detailed study of critical embeddings of weighted Sobolev spaces into weighted Orlicz spaces of exponential type for weights of monomial type. More precisely, we give an alternative proof of a recent result by N. Lam [NoDEA, Nonlinear Differ. Equ. Appl. 24, No. 4, Paper No. 39, 21 p. (2017; Zbl 1375.35012)] showing the optimality of the constant in the Trudinger-Moser inequality. We prove a Poincaré inequality for this class of weights. We show that the critical embedding is optimal within the class of Orlicz target spaces. Moreover, we prove that it is not compact, and derive a corresponding version of P.-L. Lions’ principle of concentrated compactness.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
26D15 Inequalities for sums, series and integrals

Citations:

Zbl 1375.35012
Full Text: DOI

References:

[1] Adams, RA; Fournier, JJF, Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam) (2003), Amsterdam: Elsevier/Academic Press, Amsterdam · Zbl 1098.46001
[2] Albiac, F.; Kalton, NJ, Topics in Banach space theory, volume 233 Graduate Texts in Mathematics (2016), Cham: Springer, Cham · Zbl 1352.46002 · doi:10.1007/978-3-319-31557-7
[3] Bennett, C.; Sharpley, R., Interpolation of operators, Pure and Applied Mathematics (1988), Boston, MA: Academic Press Inc., Boston, MA · Zbl 0647.46057
[4] Cabré, X.; Ros-Oton, X., Sobolev and isoperimetric inequalities with monomial weights, J. Differ. Equ., 255, 11, 4312-4336 (2013) · Zbl 1293.46018 · doi:10.1016/j.jde.2013.08.010
[5] Carleson, L.; Chang, S-YA, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math., 110, 2, 113-127 (1986) · Zbl 0619.58013
[6] Edmunds, D.E., Evans, W.D.: Spectral theory and differential operators. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2018. Second edition of [MR0929030] · Zbl 1447.47006
[7] Edmunds, DE; Gurka, P.; Opic, B., Sharpness of embeddings in logarithmic Bessel-potential spaces, Proc. Royal Soc. Edinburgh Sect. A, 126, 5, 995-1009 (1996) · Zbl 0860.46024 · doi:10.1017/S0308210500023210
[8] Edmunds, DE; Kerman, R.; Pick, L., Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms, J. Funct. Anal., 170, 2, 307-355 (2000) · Zbl 0955.46019 · doi:10.1006/jfan.1999.3508
[9] Flucher, M., Extremal functions for the Trudinger-Moser inequality in \(2\) dimensions, Comment. Math. Helv., 67, 3, 471-497 (1992) · Zbl 0763.58008 · doi:10.1007/BF02566514
[10] Folland, G.B.: Real analysis. Pure and Applied Mathematics (New York). John Wiley & Sons, Inc., New York, second edition (1999). Modern techniques and their applications, A Wiley-Interscience Publication · Zbl 0924.28001
[11] Hempel, JA; Morris, GR; Trudinger, NS, On the sharpness of a limiting case of the Sobolev imbedding theorem, Bull. Aust. Math. Soc., 3, 369-373 (1970) · Zbl 0205.12801 · doi:10.1017/S0004972700046074
[12] Lam, N., Sharp Trudinger-Moser inequalities with monomial weights, NoDEA Nonlinear Differ. Equ. Appl., 24, 4, Art. 39, 21 (2017) · Zbl 1375.35012 · doi:10.1007/s00030-017-0456-8
[13] Lin, K-C, Extremal functions for Moser’s inequality, Trans. Am. Math. Soc., 348, 7, 2663-2671 (1996) · Zbl 0861.49001 · doi:10.1090/S0002-9947-96-01541-3
[14] Lin, K.-C.: Moser’s inequality and \(n\)-Laplacian. In Geometry from the Pacific Rim (Singapore, 1994), pp. 237-245. de Gruyter, Berlin (1997) · Zbl 0893.58022
[15] Lions, P-L, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1, 1, 145-201 (1985) · Zbl 0704.49005 · doi:10.4171/RMI/6
[16] Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077-1092 (1970/71) · Zbl 0203.43701
[17] Muckenhoupt, B., Hardy’s inequality with weights, Studia Math., 44, 31-38 (1972) · Zbl 0236.26015 · doi:10.4064/sm-44-1-31-38
[18] O’Neil, R., Convolution operators and \(L(p,\, q)\) spaces, Duke Math. J., 30, 129-142 (1963) · Zbl 0178.47701 · doi:10.1215/S0012-7094-63-03015-1
[19] Pick, L.: Optimal Sobolev embeddings. In: Nonlinear analysis, function spaces and applications, Vol. 6 (Prague, 1998), pp. 156-199. Acad. Sci. Czech Repub., Prague (1999) · Zbl 0964.46012
[20] Pick, L.; Kufner, A.; John, O.; Fučík, S., Function spaces, volume 14 of De Gruyter Series in Nonlinear Analysis and Applications (2013), Berlin: Walter de Gruyter & Co., Berlin · Zbl 1275.46002
[21] Pokhozhaev, S., Eigenfunctions of the equation \(\Delta u+\lambda f(u) = 0\), Soviet Math. Doklady, 6, 1408-1411 (1965) · Zbl 0141.30202
[22] Ruf, B.: On a result by Carleson-Chang concerning the Trudinger-Moser inequality. In: Proceedings of the Third World Congress of Nonlinear Analysts, Part 9 (Catania, 2000), vol. 47, pp. 6041-6051 (2001) · Zbl 1042.46508
[23] Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J. (1970) · Zbl 0207.13501
[24] Talenti, G., A weighted version of a rearrangement inequality, Ann. Univ. Ferrara Sez. VII (N.S.), 43, 121-133, 1997 (1998) · Zbl 0936.26007
[25] Trudinger, NS, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17, 473-483 (1967) · Zbl 0163.36402
[26] Yudovich, V., Some estimates connected with integral operators and with solutions of elliptic equations, Soviet Math. Doklady, 2, 746-749 (1961) · Zbl 0144.14501
[27] Zaanen, A.C.: Linear analysis. Measure and integral, Banach and Hilbert space, linear integral equations. Interscience Publishers Inc., New York; North-Holland Publishing Co., Amsterdam; P. Noordhoff N.V., Groningen (1953)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.