×

Entanglement of defect subregions in double holography. (English) Zbl 07917491

Summary: In the framework of double holography, we investigate the entanglement behavior of a subregion of the defect on the boundary of a \(\mathrm{CFT}_3\). The entanglement entropy of this defect subregion is determined by the quantum extremal surface (QES) anchored at the two endpoints of the subregion from the brane perspective. We further analyze the entanglement entropy of the quantum matter within this QES, which can be extracted from the total entanglement entropy. We find there are two phases of the QES. To numerically distinguish these phases, we design a strategy for approaching the QES by progressively reducing the width of a semi-ellipse-like region within the \(\mathrm{CFT}_3\), which is bounded by the defect. During this process, we discover an entanglement phase transition driven by the degree of freedom on the brane. In the shrinking phase, the entanglement wedge of the defect subregion sharply decreases to zero as the removal of the \(\mathrm{CFT}_3\). In contrast, in the stable phase, the wedge almost remains constant. In this phase, the formulas of entanglement measures can be derived based on defect and \(\mathrm{CFT}_3\) central charges in the semi-classical limit. For entanglement entropy, the classical geometry only contributes a subleading term with logarithmic divergence, but the matter entanglement exhibits a dominant linear divergence, even in the semi-classical limit. For the reflected entropy within the defect subregion, classical geometry contributes a leading term with logarithmic divergence, while the quantum matter within the entanglement wedge only contributes a finite term.

MSC:

83Cxx General relativity
81Txx Quantum field theory; related classical field theories
83Exx Unified, higher-dimensional and super field theories

Software:

Surface Evolver

References:

[1] Maldacena, JM, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231, 1998 · Zbl 0914.53047 · doi:10.4310/ATMP.1998.v2.n2.a1
[2] Gubser, SS; Klebanov, IR; Polyakov, AM, Gauge theory correlators from noncritical string theory, Phys. Lett. B, 428, 105, 1998 · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[3] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253, 1998 · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[4] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, 181602, 2006 · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[5] Ryu, S.; Takayanagi, T., Aspects of Holographic Entanglement Entropy, JHEP, 08, 045, 2006 · doi:10.1088/1126-6708/2006/08/045
[6] Hubeny, VE; Rangamani, M.; Takayanagi, T., A covariant holographic entanglement entropy proposal, JHEP, 07, 062, 2007 · doi:10.1088/1126-6708/2007/07/062
[7] Lewkowycz, A.; Maldacena, J., Generalized gravitational entropy, JHEP, 08, 090, 2013 · Zbl 1342.83185 · doi:10.1007/JHEP08(2013)090
[8] Engelhardt, N.; Wall, AC, Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime, JHEP, 01, 073, 2015 · doi:10.1007/JHEP01(2015)073
[9] Witten, E., Gravity and the crossed product, JHEP, 10, 008, 2022 · Zbl 1534.83065 · doi:10.1007/JHEP10(2022)008
[10] Almheiri, A.; Mahajan, R.; Maldacena, J.; Zhao, Y., The Page curve of Hawking radiation from semiclassical geometry, JHEP, 03, 149, 2020 · Zbl 1435.83110 · doi:10.1007/JHEP03(2020)149
[11] Almheiri, A.; Engelhardt, N.; Marolf, D.; Maxfield, H., The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, JHEP, 12, 063, 2019 · Zbl 1431.83123 · doi:10.1007/JHEP12(2019)063
[12] A. Almheiri, R. Mahajan and J. Maldacena, Islands outside the horizon, arXiv:1910.11077 [INSPIRE].
[13] Penington, G.; Shenker, SH; Stanford, D.; Yang, Z., Replica wormholes and the black hole interior, JHEP, 03, 205, 2022 · Zbl 1522.83227 · doi:10.1007/JHEP03(2022)205
[14] Almheiri, A., Replica Wormholes and the Entropy of Hawking Radiation, JHEP, 05, 013, 2020 · Zbl 1437.83084 · doi:10.1007/JHEP05(2020)013
[15] Almheiri, A.; Mahajan, R.; Santos, JE, Entanglement islands in higher dimensions, SciPost Phys., 9, 001, 2020 · doi:10.21468/SciPostPhys.9.1.001
[16] Chen, HZ, Information Flow in Black Hole Evaporation, JHEP, 03, 152, 2020 · Zbl 1435.83111
[17] Chen, HZ, Quantum Extremal Islands Made Easy, Part I: Entanglement on the Brane, JHEP, 10, 166, 2020 · Zbl 1456.81332
[18] Chen, HZ, Quantum Extremal Islands Made Easy, Part II: Black Holes on the Brane, JHEP, 12, 025, 2020 · Zbl 1457.81084 · doi:10.1007/JHEP12(2020)025
[19] J. Hernandez, R.C. Myers and S.-M. Ruan, Quantum extremal islands made easy. Part III. Complexity on the brane, JHEP02 (2021) 173 [arXiv:2010.16398] [INSPIRE].
[20] G. Grimaldi, J. Hernandez and R.C. Myers, Quantum extremal islands made easy. Part IV. Massive black holes on the brane, JHEP03 (2022) 136 [arXiv:2202.00679] [INSPIRE].
[21] Erdmenger, J., Entanglement Entropy in a Holographic Kondo Model, Fortsch. Phys., 64, 109, 2016 · Zbl 1339.82017 · doi:10.1002/prop.201500099
[22] Hawking, SW, Black hole explosions?, Nature, 248, 30, 1974 · Zbl 1370.83053 · doi:10.1038/248030a0
[23] S.W. Hawking, Particle creation by black holes, in Euclidean quantum gravity, World Scientific (1993), p. 167-188, [doi:10.1142/9789814539395_0011].
[24] Hawking, SW, Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D, 14, 2460, 1976 · doi:10.1103/PhysRevD.14.2460
[25] Page, DN, Information in black hole radiation, Phys. Rev. Lett., 71, 3743, 1993 · Zbl 0972.83567 · doi:10.1103/PhysRevLett.71.3743
[26] Susskind, L.; Thorlacius, L.; Uglum, J., The stretched horizon and black hole complementarity, Phys. Rev. D, 48, 3743, 1993 · doi:10.1103/PhysRevD.48.3743
[27] Page, DN, Hawking radiation and black hole thermodynamics, New J. Phys., 7, 203, 2005 · doi:10.1088/1367-2630/7/1/203
[28] Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J., Black Holes: Complementarity or Firewalls?, JHEP, 02, 062, 2013 · Zbl 1342.83121 · doi:10.1007/JHEP02(2013)062
[29] Page, DN, Time Dependence of Hawking Radiation Entropy, JCAP, 09, 028, 2013 · doi:10.1088/1475-7516/2013/09/028
[30] Hartman, T.; Maldacena, J., Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP, 05, 014, 2013 · Zbl 1342.83170 · doi:10.1007/JHEP05(2013)014
[31] Takayanagi, T., Holographic Dual of BCFT, Phys. Rev. Lett., 107, 101602, 2011 · doi:10.1103/PhysRevLett.107.101602
[32] Chu, C-S; Miao, R-X, Anomalous Transport in Holographic Boundary Conformal Field Theories, JHEP, 07, 005, 2018 · Zbl 1395.81209 · doi:10.1007/JHEP07(2018)005
[33] Miao, R-X, Holographic BCFT with Dirichlet Boundary Condition, JHEP, 02, 025, 2019 · Zbl 1411.81186 · doi:10.1007/JHEP02(2019)025
[34] Ling, Y.; Liu, Y.; Xian, Z-Y, Island in Charged Black Holes, JHEP, 03, 251, 2021 · Zbl 1461.83060 · doi:10.1007/JHEP03(2021)251
[35] Geng, H., Information Transfer with a Gravitating Bath, SciPost Phys., 10, 103, 2021 · doi:10.21468/SciPostPhys.10.5.103
[36] Geng, H.; Karch, A., Massive islands, JHEP, 09, 121, 2020 · Zbl 1454.83113 · doi:10.1007/JHEP09(2020)121
[37] Krishnan, C., Critical Islands, JHEP, 01, 179, 2021 · Zbl 1459.83048 · doi:10.1007/JHEP01(2021)179
[38] Miao, R-X, An Exact Construction of Codimension two Holography, JHEP, 01, 150, 2021 · Zbl 1459.83049 · doi:10.1007/JHEP01(2021)150
[39] Akal, I.; Kusuki, Y.; Takayanagi, T.; Wei, Z., Codimension two holography for wedges, Phys. Rev. D, 102, 126007, 2020 · doi:10.1103/PhysRevD.102.126007
[40] I. Akal et al., Entanglement Entropy in a Holographic Moving Mirror and the Page Curve, Phys. Rev. Lett.126 (2021) 061604 [arXiv:2011.12005] [INSPIRE].
[41] Omidi, F., Entropy of Hawking radiation for two-sided hyperscaling violating black branes, JHEP, 04, 022, 2022 · Zbl 1522.83222 · doi:10.1007/JHEP04(2022)022
[42] Rozali, M., Information radiation in BCFT models of black holes, JHEP, 05, 004, 2020 · Zbl 1437.83117 · doi:10.1007/JHEP05(2020)004
[43] A. Karlsson, Replica wormhole and island incompatibility with monogamy of entanglement, arXiv:2007.10523 [INSPIRE].
[44] Balasubramanian, V.; Kar, A.; Ugajin, T., Islands in de Sitter space, JHEP, 02, 072, 2021 · Zbl 1460.83063 · doi:10.1007/JHEP02(2021)072
[45] Balasubramanian, V.; Kar, A.; Ugajin, T., Entanglement between two gravitating universes, Class. Quant. Grav., 39, 174001, 2022 · Zbl 1504.83035 · doi:10.1088/1361-6382/ac3c8b
[46] Balasubramanian, V.; Kar, A.; Ugajin, T., Entanglement between two disjoint universes, JHEP, 02, 136, 2021 · Zbl 1460.81006 · doi:10.1007/JHEP02(2021)136
[47] A. Miyata and T. Ugajin, Evaporation of black holes in flat space entangled with an auxiliary universe, PTEP2022 (2022) 013B13 [arXiv:2104.00183] [INSPIRE]. · Zbl 1487.83101
[48] Miyata, A.; Ugajin, T., Entanglement between two evaporating black holes, JHEP, 09, 009, 2022 · Zbl 1531.83089 · doi:10.1007/JHEP09(2022)009
[49] Marolf, D.; Maxfield, H., Observations of Hawking radiation: the Page curve and baby universes, JHEP, 04, 272, 2021 · Zbl 1462.83029 · doi:10.1007/JHEP04(2021)272
[50] Marolf, D.; Maxfield, H., Transcending the ensemble: baby universes, spacetime wormholes, and the order and disorder of black hole information, JHEP, 08, 044, 2020 · Zbl 1454.83042 · doi:10.1007/JHEP08(2020)044
[51] Balasubramanian, V.; Kar, A.; Ross, SF; Ugajin, T., Spin structures and baby universes, JHEP, 09, 192, 2020 · Zbl 1454.83078 · doi:10.1007/JHEP09(2020)192
[52] C. Peng, J. Tian and J. Yu, Baby universes, ensemble averages and factorizations with matters, arXiv:2111.14856 [INSPIRE].
[53] Peng, C.; Tian, J.; Yang, Y., Half-wormholes and ensemble averages, Eur. Phys. J. C, 83, 993, 2023 · doi:10.1140/epjc/s10052-023-12164-9
[54] Alishahiha, M.; Faraji Astaneh, A.; Naseh, A., Island in the presence of higher derivative terms, JHEP, 02, 035, 2021 · Zbl 1460.83062 · doi:10.1007/JHEP02(2021)035
[55] Hashimoto, K.; Iizuka, N.; Matsuo, Y., Islands in Schwarzschild black holes, JHEP, 06, 085, 2020 · Zbl 1437.83060 · doi:10.1007/JHEP06(2020)085
[56] Anegawa, T.; Iizuka, N., Notes on islands in asymptotically flat 2d dilaton black holes, JHEP, 07, 036, 2020 · Zbl 1451.83056 · doi:10.1007/JHEP07(2020)036
[57] Hartman, T.; Shaghoulian, E.; Strominger, A., Islands in Asymptotically Flat 2D Gravity, JHEP, 07, 022, 2020 · Zbl 1455.83017 · doi:10.1007/JHEP07(2020)022
[58] Chen, HZ, Evaporating Black Holes Coupled to a Thermal Bath, JHEP, 01, 065, 2021 · Zbl 1459.83032 · doi:10.1007/JHEP01(2021)065
[59] Bhattacharya, A., Topological shadows and complexity of islands in multiboundary wormholes, JHEP, 02, 152, 2021 · Zbl 1460.83027 · doi:10.1007/JHEP02(2021)152
[60] Deng, F.; Chu, J.; Zhou, Y., Defect extremal surface as the holographic counterpart of Island formula, JHEP, 03, 008, 2021 · Zbl 1461.83055 · doi:10.1007/JHEP03(2021)008
[61] Wang, X.; Li, R.; Wang, J., Islands and Page curves of Reissner-Nordström black holes, JHEP, 04, 103, 2021 · Zbl 1462.83022 · doi:10.1007/JHEP04(2021)103
[62] He, S.; Sun, Y.; Zhao, L.; Zhang, Y-X, The universality of islands outside the horizon, JHEP, 05, 047, 2022 · Zbl 1522.83186 · doi:10.1007/JHEP05(2022)047
[63] Gautason, FF; Schneiderbauer, L.; Sybesma, W.; Thorlacius, L., Page Curve for an Evaporating Black Hole, JHEP, 05, 091, 2020 · Zbl 1437.83080 · doi:10.1007/JHEP05(2020)091
[64] C. Krishnan, V. Patil and J. Pereira, Page Curve and the Information Paradox in Flat Space, arXiv:2005.02993 [INSPIRE].
[65] Sybesma, W., Pure de Sitter space and the island moving back in time, Class. Quant. Grav., 38, 145012, 2021 · Zbl 1482.83109 · doi:10.1088/1361-6382/abff9a
[66] C.-J. Chou, H.B. Lao and Y. Yang, Page curve of effective Hawking radiation, Phys. Rev. D106 (2022) 066008 [arXiv:2111.14551] [INSPIRE].
[67] Chou, C-J; Lao, HB; Yang, Y., Page curve of AdS-Vaidya model for evaporating black holes, JHEP, 05, 342, 2024 · Zbl 07877642 · doi:10.1007/JHEP05(2024)342
[68] Hollowood, TJ; Kumar, SP; Legramandi, A.; Talwar, N., Grey-body factors, irreversibility and multiple island saddles, JHEP, 03, 110, 2022 · Zbl 1522.83190 · doi:10.1007/JHEP03(2022)110
[69] Suzuki, K.; Takayanagi, T., BCFT and Islands in two dimensions, JHEP, 06, 095, 2022 · Zbl 1522.83241 · doi:10.1007/JHEP06(2022)095
[70] Suzuki, Y-K; Terashima, S., On the dynamics in the AdS/BCFT correspondence, JHEP, 09, 103, 2022 · Zbl 1531.83146 · doi:10.1007/JHEP09(2022)103
[71] A. Bhattacharya, A. Bhattacharyya, P. Nandy and A.K. Patra, Bath deformations, islands, and holographic complexity, Phys. Rev. D105 (2022) 066019 [arXiv:2112.06967] [INSPIRE].
[72] Bhattacharya, A.; Bhattacharyya, A.; Nandy, P.; Patra, AK, Partial islands and subregion complexity in geometric secret-sharing model, JHEP, 12, 091, 2021 · Zbl 1521.83089 · doi:10.1007/JHEP12(2021)091
[73] Caceres, E.; Kundu, A.; Patra, AK; Shashi, S., Page curves and bath deformations, SciPost Phys. Core, 5, 033, 2022 · doi:10.21468/SciPostPhysCore.5.2.033
[74] Bhattacharya, A.; Bhattacharyya, A.; Nandy, P.; Patra, AK, Islands and complexity of eternal black hole and radiation subsystems for a doubly holographic model, JHEP, 05, 135, 2021 · Zbl 1466.83095 · doi:10.1007/JHEP05(2021)135
[75] Caceres, E.; Kundu, A.; Patra, AK; Shashi, S., Warped information and entanglement islands in AdS/WCFT, JHEP, 07, 004, 2021 · Zbl 1468.81081 · doi:10.1007/JHEP07(2021)004
[76] Chen, Y., Pulling Out the Island with Modular Flow, JHEP, 03, 033, 2020 · Zbl 1435.83112 · doi:10.1007/JHEP03(2020)033
[77] Balasubramanian, V., Geometric secret sharing in a model of Hawking radiation, JHEP, 01, 177, 2021 · Zbl 1459.83023 · doi:10.1007/JHEP01(2021)177
[78] A. Almheiri et al., The entropy of Hawking radiation, Rev. Mod. Phys.93 (2021) 035002 [arXiv:2006.06872] [INSPIRE].
[79] Li, T.; Chu, J.; Zhou, Y., Reflected Entropy for an Evaporating Black Hole, JHEP, 11, 155, 2020 · Zbl 1456.83060 · doi:10.1007/JHEP11(2020)155
[80] Kumar Basak, J., Islands for entanglement negativity, SciPost Phys., 12, 003, 2022 · doi:10.21468/SciPostPhys.12.1.003
[81] Anderson, L.; Parrikar, O.; Soni, RM, Islands with gravitating baths: towards ER = EPR, JHEP, 10, 226, 2020 · Zbl 1476.83038
[82] Vardhan, S.; Kudler-Flam, J.; Shapourian, H.; Liu, H., Mixed-state entanglement and information recovery in thermalized states and evaporating black holes, JHEP, 01, 064, 2023 · Zbl 1540.83069 · doi:10.1007/JHEP01(2023)064
[83] Kawabata, K.; Nishioka, T.; Okuyama, Y.; Watanabe, K., Replica wormholes and capacity of entanglement, JHEP, 10, 227, 2021 · Zbl 1476.83049 · doi:10.1007/JHEP10(2021)227
[84] Kawabata, K.; Nishioka, T.; Okuyama, Y.; Watanabe, K., Probing Hawking radiation through capacity of entanglement, JHEP, 05, 062, 2021 · Zbl 1466.83054 · doi:10.1007/JHEP05(2021)062
[85] H. Geng, S. Lüst, R.K. Mishra and D. Wakeham, Holographic BCFTs and Communicating Black Holes, jhep08 (2021) 003 [arXiv:2104.07039] [INSPIRE]. · Zbl 1469.83028
[86] Geng, H., Entanglement phase structure of a holographic BCFT in a black hole background, JHEP, 05, 153, 2022 · Zbl 1522.83291 · doi:10.1007/JHEP05(2022)153
[87] Akal, I., Page curve under final state projection, Phys. Rev. D, 105, 126026, 2022 · doi:10.1103/PhysRevD.105.126026
[88] R. Renner and J. Wang, The black hole information puzzle and the quantum de Finetti theorem, arXiv:2110.14653 [INSPIRE].
[89] N. Engelhardt and Å. Folkestad, Canonical purification of evaporating black holes, Phys. Rev. D105 (2022) 086010 [arXiv:2201.08395] [INSPIRE].
[90] M. Afrasiar, J. Kumar Basak, A. Chandra and G. Sengupta, Islands for entanglement negativity in communicating black holes, Phys. Rev. D108 (2023) 066013 [arXiv:2205.07903] [INSPIRE].
[91] Jeong, H-S; Kim, K-Y; Sun, Y-W, Entanglement entropy analysis of dyonic black holes using doubly holographic theory, Phys. Rev. D, 108, 126016, 2023 · doi:10.1103/PhysRevD.108.126016
[92] B. Ahn et al., Islands in charged linear dilaton black holes, Phys. Rev. D105 (2022) 046012 [arXiv:2107.07444] [INSPIRE].
[93] Uhlemann, CF, Islands and Page curves in 4d from Type IIB, JHEP, 08, 104, 2021 · Zbl 1469.83041 · doi:10.1007/JHEP08(2021)104
[94] Karch, A.; Sun, H.; Uhlemann, CF, Double holography in string theory, JHEP, 10, 012, 2022 · Zbl 1534.81117 · doi:10.1007/JHEP10(2022)012
[95] Erdmenger, J.; Flory, M.; Newrzella, M-N, Bending branes for DCFT in two dimensions, JHEP, 01, 058, 2015 · Zbl 1388.83654 · doi:10.1007/JHEP01(2015)058
[96] Fonda, P.; Giomi, L.; Salvio, A.; Tonni, E., On shape dependence of holographic mutual information in AdS_4, JHEP, 02, 005, 2015 · Zbl 1388.83114 · doi:10.1007/JHEP02(2015)005
[97] Fonda, P.; Seminara, D.; Tonni, E., On shape dependence of holographic entanglement entropy in AdS_4/CFT_3, JHEP, 12, 037, 2015 · Zbl 1388.83443
[98] Seminara, D.; Sisti, J.; Tonni, E., Corner contributions to holographic entanglement entropy in AdS_4/BCFT_3, JHEP, 11, 076, 2017 · Zbl 1383.81257 · doi:10.1007/JHEP11(2017)076
[99] Seminara, D.; Sisti, J.; Tonni, E., Holographic entanglement entropy in AdS_4/BCFT_3and the Willmore functional, JHEP, 08, 164, 2018 · Zbl 1396.81183 · doi:10.1007/JHEP08(2018)164
[100] Cavini, G.; Seminara, D.; Sisti, J.; Tonni, E., On shape dependence of holographic entanglement entropy in AdS_4/CFT_3with Lifshitz scaling and hyperscaling violation, JHEP, 02, 172, 2020 · Zbl 1435.83142 · doi:10.1007/JHEP02(2020)172
[101] Brakke, KA, The surface evolver, Exper. Math., 1, 141, 1992 · Zbl 0769.49033 · doi:10.1080/10586458.1992.10504253
[102] K.A. Brakke, Surface Evolver program.
[103] Randall, L.; Sundrum, R., An alternative to compactification, Phys. Rev. Lett., 83, 4690, 1999 · Zbl 0946.81074 · doi:10.1103/PhysRevLett.83.4690
[104] Dvali, GR; Gabadadze, G.; Porrati, M., 4-D gravity on a brane in 5-D Minkowski space, Phys. Lett. B, 485, 208, 2000 · Zbl 0961.83045 · doi:10.1016/S0370-2693(00)00669-9
[105] S.S. Gubser, AdS/CFT and gravity, Phys. Rev. D63 (2001) 084017 [hep-th/9912001] [INSPIRE].
[106] R.-X. Miao, C.-S. Chu and W.-Z. Guo, New proposal for a holographic boundary conformal field theory, Phys. Rev. D96 (2017) 046005 [arXiv:1701.04275] [INSPIRE].
[107] Chu, C-S; Miao, R-X; Guo, W-Z, On New Proposal for Holographic BCFT, JHEP, 04, 089, 2017 · Zbl 1378.81109 · doi:10.1007/JHEP04(2017)089
[108] Ling, Y., Reflected entropy in double holography, JHEP, 02, 037, 2022 · Zbl 1522.81431 · doi:10.1007/JHEP02(2022)037
[109] Emparan, R.; Johnson, CV; Myers, RC, Surface terms as counterterms in the AdS / CFT correspondence, Phys. Rev. D, 60, 104001, 1999 · doi:10.1103/PhysRevD.60.104001
[110] Y. Liu, Z.-Y. Xian, C. Peng and Y. Ling, Black holes entangled by radiation, JHEP11 (2022) 043 [Addendum ibid.11 (2022) 043] [arXiv:2205.14596] [INSPIRE].
[111] Izumi, K., Brane dynamics of holographic BCFTs, JHEP, 10, 050, 2022 · Zbl 1534.81142 · doi:10.1007/JHEP10(2022)050
[112] M. Headrick, S. Kitchen and T. Wiseman, A new approach to static numerical relativity, and its application to Kaluza-Klein black holes, Class. Quant. Grav.27 (2010) 035002 [arXiv:0905.1822] [INSPIRE]. · Zbl 1186.83083
[113] Dias, ÓJC; Santos, JE; Way, B., Numerical Methods for Finding Stationary Gravitational Solutions, Class. Quant. Grav., 33, 133001, 2016 · Zbl 1346.83002 · doi:10.1088/0264-9381/33/13/133001
[114] Dutta, S.; Faulkner, T., A canonical purification for the entanglement wedge cross-section, JHEP, 03, 178, 2021 · Zbl 1461.81104 · doi:10.1007/JHEP03(2021)178
[115] V. Chandrasekaran, M. Miyaji and P. Rath, Including contributions from entanglement islands to the reflected entropy, Phys. Rev. D102 (2020) 086009 [arXiv:2006.10754] [INSPIRE].
[116] Liu, Y.; Jian, S-K; Ling, Y.; Xian, Z-Y, Entanglement inside a black hole before the Page time, JHEP, 07, 043, 2024 · Zbl 07917261 · doi:10.1007/JHEP07(2024)043
[117] Chen, L.; Wang, H., Causal shadow and non-local modular flow: from degeneracy to perturbative genesis by correlation, JHEP, 02, 052, 2023 · Zbl 1541.83018
[118] Balasubramanian, V.; Craps, B.; Khramtsov, M.; Shaghoulian, E., Submerging islands through thermalization, JHEP, 10, 048, 2021 · Zbl 1476.83117 · doi:10.1007/JHEP10(2021)048
[119] Hollowood, TJ; Kumar, SP; Legramandi, A.; Talwar, N., Ephemeral islands, plunging quantum extremal surfaces and BCFT channels, JHEP, 01, 078, 2022 · Zbl 1521.83119 · doi:10.1007/JHEP01(2022)078
[120] Craps, B.; Hernandez, J.; Khramtsov, M.; Knysh, M., Delicate windows into evaporating black holes, JHEP, 02, 080, 2023 · Zbl 1541.83041 · doi:10.1007/JHEP02(2023)080
[121] R.A. Janik, Viscous plasma evolution from gravity using AdS/CFT, Phys. Rev. Lett.98 (2007) 022302 [hep-th/0610144] [INSPIRE].
[122] Chesler, PM; Yaffe, LG, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett., 102, 211601, 2009 · doi:10.1103/PhysRevLett.102.211601
[123] Bhattacharyya, S.; Minwalla, S., Weak Field Black Hole Formation in Asymptotically AdS Spacetimes, JHEP, 09, 034, 2009 · doi:10.1088/1126-6708/2009/09/034
[124] Bosch, P.; Green, SR; Lehner, L., Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability, Phys. Rev. Lett., 116, 141102, 2016 · doi:10.1103/PhysRevLett.116.141102
[125] P. Bosch, S.R. Green, L. Lehner and H. Roussille, Excited hairy black holes: Dynamical construction and level transitions, Phys. Rev. D102 (2020) 044014 [arXiv:1912.05598] [INSPIRE].
[126] C.-Y. Zhang et al., Dynamical charged black hole spontaneous scalarization in anti-de Sitter spacetimes, Phys. Rev. D104 (2021) 084089 [arXiv:2103.13599] [INSPIRE].
[127] C.-Y. Zhang et al., Dynamical transitions in scalarization and descalarization through black hole accretion, Phys. Rev. D106 (2022) L061501 [arXiv:2204.09260] [INSPIRE].
[128] Chen, Q., Descalarization by quenching charged hairy black hole in asymptotically AdS spacetime, JHEP, 01, 062, 2023 · Zbl 1540.83040 · doi:10.1007/JHEP01(2023)062
[129] Q. Chen et al., Nonlinear dynamics of hot, cold, and bald Einstein-Maxwell-scalar black holes in AdS spacetime, Phys. Rev. D108 (2023) 084016 [arXiv:2307.03060] [INSPIRE].
[130] Janik, RA; Jankowski, J.; Soltanpanahi, H., Real-Time dynamics and phase separation in a holographic first order phase transition, Phys. Rev. Lett., 119, 261601, 2017 · doi:10.1103/PhysRevLett.119.261601
[131] Chen, Q., Critical dynamics in holographic first-order phase transition, JHEP, 01, 056, 2023 · Zbl 1540.83026
[132] Chen, Q., Quench dynamics in holographic first-order phase transition, Phys. Rev. D, 108, 106017, 2023 · doi:10.1103/PhysRevD.108.106017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.