×

Anomalous transport in holographic boundary conformal field theories. (English) Zbl 1395.81209

Summary: Recently, it is found that when an external magnetic field parallel to the boundary is applied, Weyl anomaly gives rises to a new anomalous current transport in the vicinity of the boundary. At the leading order of closeness from the boundary, the current is determined universally by the central charge of the theory. In this paper, we give a holographic proof for the existence and universality for this transport phenomena. We show that the current is independent of boundary conditions in four dimensions while it depends on boundary conditions in other dimensions. We also study the backreaction of the bulk Maxwell fields on the AdS spacetime and obtain the holographic Weyl anomaly for 5d BCFTs in presence of the background field strength.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T50 Anomalies in quantum field theory
83E30 String and superstring theories in gravitational theory

References:

[1] D.E. Kharzeev, The chiral magnetic effect and anomaly-induced transport, Prog. Part. Nucl. Phys.75 (2014) 133 [arXiv:1312.3348] [INSPIRE].
[2] K. Landsteiner, Notes on anomaly induced transport, Acta Phys. Polon.B 47 (2016) 2617 [arXiv:1610.04413] [INSPIRE].
[3] A. Vilenkin, Parity nonconservation and neutrino transport in magnetic fields, Astrophys. J.451 (1995) 700 [INSPIRE].
[4] A. Vilenkin, Equilibrium parity violating current in a magnetic field, Phys. Rev.D 22 (1980) 3080 [INSPIRE].
[5] M. Giovannini and M.E. Shaposhnikov, Primordial hypermagnetic fields and triangle anomaly, Phys. Rev.D 57 (1998) 2186 [hep-ph/9710234] [INSPIRE].
[6] A. Yu. Alekseev, V.V. Cheianov and J. Fröhlich, Universality of transport properties in equilibrium, Goldstone theorem and chiral anomaly, Phys. Rev. Lett.81 (1998) 3503 [cond-mat/9803346] [INSPIRE].
[7] K. Fukushima, Views of the chiral magnetic effect, Lect. Notes Phys.871 (2013) 241 [arXiv:1209.5064] [INSPIRE].
[8] D. Kharzeev and A. Zhitnitsky, Charge separation induced by P-odd bubbles in QCD matter, Nucl. Phys.A 797 (2007) 67 [arXiv:0706.1026] [INSPIRE].
[9] J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP01 (2009) 055 [arXiv:0809.2488] [INSPIRE]. · Zbl 1243.83037
[10] N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R. Loganayagam and P. Surowka, Hydrodynamics from charged black branes, JHEP01 (2011) 094 [arXiv:0809.2596] [INSPIRE]. · Zbl 1214.83014
[11] D.T. Son and P. Surowka, Hydrodynamics with triangle anomalies, Phys. Rev. Lett.103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].
[12] K. Landsteiner, E. Megias and F. Pena-Benitez, Gravitational anomaly and transport, Phys. Rev. Lett.107 (2011) 021601 [arXiv:1103.5006] [INSPIRE]. · Zbl 1301.81303
[13] S. Golkar and D.T. Son, (Non)-renormalization of the chiral vortical effect coefficient, JHEP02 (2015) 169 [arXiv:1207.5806] [INSPIRE]. · Zbl 1388.83348
[14] K. Jensen, R. Loganayagam and A. Yarom, Thermodynamics, gravitational anomalies and cones, JHEP02 (2013) 088 [arXiv:1207.5824] [INSPIRE]. · Zbl 1342.83245
[15] M.N. Chernodub, Anomalous transport due to the conformal anomaly, Phys. Rev. Lett.117 (2016) 141601 [arXiv:1603.07993] [INSPIRE].
[16] M.N. Chernodub, A. Cortijo and M.A.H. Vozmediano, Generation of a Nernst current from the conformal anomaly in Dirac and Weyl semimetals, Phys. Rev. Lett.120 (2018) 206601 [arXiv:1712.05386] [INSPIRE].
[17] H.B.G. Casimir, On the attraction between two perfectly conducting plates, Indag. Math.10 (1948) 261 [Kon. Ned. Akad. Wetensch. Proc.51 (1948) 793] [Front. Phys.65 (1987) 342] [Kon. Ned. Akad. Wetensch. Proc.100N3-4 (1997) 61] [INSPIRE]. · Zbl 0031.19005
[18] G. Plunien, B. Müller and W. Greiner, The Casimir effect, Phys. Rept.134 (1986) 87 [INSPIRE].
[19] M. Bordag, U. Mohideen and V.M. Mostepanenko, New developments in the Casimir effect, Phys. Rept.353 (2001) 1 [quant-ph/0106045] [INSPIRE]. · Zbl 0972.81212
[20] R.-X. Miao and C.-S. Chu, Universality for shape dependence of Casimir effects from Weyl anomaly, JHEP03 (2018) 046 [arXiv:1706.09652] [INSPIRE]. · Zbl 1388.81743
[21] C.-S. Chu and R.-X. Miao, Anomaly induced transport in boundary quantum field theories, arXiv:1803.03068 [INSPIRE].
[22] M.J. Duff, Twenty years of the Weyl anomaly, Class. Quant. Grav.11 (1994) 1387 [hep-th/9308075] [INSPIRE]. · Zbl 0808.53063
[23] M.J. Duff, Ultraviolet divergences in extended supergravity, in First school on supergravity, Trieste, Italy, 22 April-6 May 1981 [arXiv:1201.0386] [INSPIRE].
[24] Y. Nakayama, CP-violating CFT and trace anomaly, Nucl. Phys.B 859 (2012) 288 [arXiv:1201.3428] [INSPIRE]. · Zbl 1246.81328
[25] L. Bonora, S. Giaccari and B. Lima de Souza, Trace anomalies in chiral theories revisited, JHEP07 (2014) 117 [arXiv:1403.2606] [INSPIRE]. · Zbl 1317.81237
[26] F. Bastianelli and R. Martelli, On the trace anomaly of a Weyl fermion, JHEP11 (2016) 178 [arXiv:1610.02304] [INSPIRE]. · Zbl 1390.83323
[27] J.L. Cardy, Boundary conformal field theory, hep-th/0411189 [INSPIRE].
[28] D.M. McAvity and H. Osborn, Energy momentum tensor in conformal field theories near a boundary, Nucl. Phys.B 406 (1993) 655 [hep-th/9302068] [INSPIRE]. · Zbl 0990.81572
[29] D. Fursaev, Conformal anomalies of CFT’s with boundaries, JHEP12 (2015) 112 [arXiv:1510.01427] [INSPIRE]. · Zbl 1388.81977
[30] C.P. Herzog, K.-W. Huang and K. Jensen, Universal entanglement and boundary geometry in conformal field theory, JHEP01 (2016) 162 [arXiv:1510.00021] [INSPIRE]. · Zbl 1388.81082
[31] C. Herzog, K.-W. Huang and K. Jensen, Displacement operators and constraints on boundary central charges, Phys. Rev. Lett.120 (2018) 021601 [arXiv:1709.07431] [INSPIRE].
[32] K. Jensen, E. Shaverin and A. Yarom, ’t Hooft anomalies and boundaries, JHEP01 (2018) 085 [arXiv:1710.07299] [INSPIRE]. · Zbl 1384.83059
[33] M. Kurkov and D. Vassilevich, Parity anomaly in four dimensions, Phys. Rev.D 96 (2017) 025011 [arXiv:1704.06736] [INSPIRE]. · Zbl 1388.83023
[34] M. Kurkov and D. Vassilevich, Gravitational parity anomaly with and without boundaries, JHEP03 (2018) 072 [arXiv:1801.02049] [INSPIRE]. · Zbl 1388.83023
[35] D. Rodriguez-Gomez and J.G. Russo, Free energy and boundary anomalies on\( {\mathbb{S}}^a× {\text{\mathbb{H}}}^b \)spaces, JHEP10 (2017) 084 [arXiv:1708.00305] [INSPIRE]. · Zbl 1383.81255
[36] D. Seminara, J. Sisti and E. Tonni, Corner contributions to holographic entanglement entropy in AdS_{4}/BCFT_{3}, JHEP11 (2017) 076 [arXiv:1708.05080] [INSPIRE]. · Zbl 1383.81257
[37] T. Takayanagi, Holographic dual of BCFT, Phys. Rev. Lett.107 (2011) 101602 [arXiv:1105.5165] [INSPIRE].
[38] M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP11 (2011) 043 [arXiv:1108.5152] [INSPIRE]. · Zbl 1306.81152
[39] M. Nozaki, T. Takayanagi and T. Ugajin, Central charges for BCFTs and holography, JHEP06 (2012) 066 [arXiv:1205.1573] [INSPIRE]. · Zbl 1397.81318
[40] R.-X. Miao, C.-S. Chu and W.-Z. Guo, New proposal for a holographic boundary conformal field theory, Phys. Rev.D 96 (2017) 046005 [arXiv:1701.04275] [INSPIRE].
[41] C.-S. Chu, R.-X. Miao and W.-Z. Guo, On new proposal for holographic BCFT, JHEP04 (2017) 089 [arXiv:1701.07202] [INSPIRE].
[42] A. Faraji Astaneh and S.N. Solodukhin, Holographic calculation of boundary terms in conformal anomaly, Phys. Lett.B 769 (2017) 25 [arXiv:1702.00566] [INSPIRE]. · Zbl 1370.81134
[43] A. Gynther, K. Landsteiner, F. Pena-Benitez and A. Rebhan, Holographic anomalous conductivities and the chiral magnetic effect, JHEP02 (2011) 110 [arXiv:1005.2587] [INSPIRE]. · Zbl 1294.81281
[44] P. Benetti Genolini, D. Cassani, D. Martelli and J. Sparks, Holographic renormalization and supersymmetry, JHEP02 (2017) 132 [arXiv:1612.06761] [INSPIRE]. · Zbl 1377.81201
[45] M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP07 (1998) 023 [hep-th/9806087] [INSPIRE]. · Zbl 0958.81083
[46] J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev.82 (1951) 664 [INSPIRE]. · Zbl 0043.42201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.