×

Submerging islands through thermalization. (English) Zbl 1476.83117

Summary: We illustrate scenarios in which Hawking radiation collected in finite regions of a reservoir provides temporary access to the interior of black holes through transient entanglement “islands.” Whether these islands appear and the amount of time for which they dominate — sometimes giving way to a thermalization transition — is controlled by the amount of radiation we probe. In the first scenario, two reservoirs are coupled to an eternal black hole. The second scenario involves two holographic quantum gravitating systems at different temperatures interacting through a Rindler-like reservoir, which acts as a heat engine maintaining thermal equilibrium. The latter situation, which has an intricate phase structure, describes two eternal black holes radiating into each other through a shared reservoir.

MSC:

83C80 Analogues of general relativity in lower dimensions
83C45 Quantization of the gravitational field
83C57 Black holes
83E05 Geometrodynamics and the holographic principle
81T28 Thermal quantum field theory
81P42 Entanglement measures, concurrencies, separability criteria

References:

[1] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, 181602 (2006) · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[2] Hubeny, VE; Rangamani, M.; Takayanagi, T., A Covariant holographic entanglement entropy proposal, JHEP, 07, 062 (2007) · doi:10.1088/1126-6708/2007/07/062
[3] Engelhardt, N.; Wall, AC, Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime, JHEP, 01, 073 (2015) · doi:10.1007/JHEP01(2015)073
[4] Penington, G., Entanglement Wedge Reconstruction and the Information Paradox, JHEP, 09, 002 (2020) · Zbl 1454.81039 · doi:10.1007/JHEP09(2020)002
[5] Almheiri, A.; Engelhardt, N.; Marolf, D.; Maxfield, H., The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, JHEP, 12, 063 (2019) · Zbl 1431.83123 · doi:10.1007/JHEP12(2019)063
[6] Almheiri, A.; Mahajan, R.; Maldacena, J.; Zhao, Y., The Page curve of Hawking radiation from semiclassical geometry, JHEP, 03, 149 (2020) · Zbl 1435.83110 · doi:10.1007/JHEP03(2020)149
[7] A. Almheiri, R. Mahajan and J. Maldacena, Islands outside the horizon, arXiv:1910.11077 [INSPIRE]. · Zbl 1435.83110
[8] Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A., Replica Wormholes and the Entropy of Hawking Radiation, JHEP, 05, 013 (2020) · Zbl 1437.83084 · doi:10.1007/JHEP05(2020)013
[9] Almheiri, A.; Mahajan, R.; Santos, JE, Entanglement islands in higher dimensions, SciPost Phys., 9, 001 (2020) · doi:10.21468/SciPostPhys.9.1.001
[10] Chen, HZ; Fisher, Z.; Hernandez, J.; Myers, RC; Ruan, S-M, Information Flow in Black Hole Evaporation, JHEP, 03, 152 (2020) · Zbl 1435.83111
[11] G. Penington, S. H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE].
[12] Marolf, D.; Maxfield, H., Transcending the ensemble: baby universes, spacetime wormholes, and the order and disorder of black hole information, JHEP, 08, 044 (2020) · Zbl 1454.83042 · doi:10.1007/JHEP08(2020)044
[13] Hartman, T.; Maldacena, J., Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP, 05, 014 (2013) · Zbl 1342.83170 · doi:10.1007/JHEP05(2013)014
[14] Rozali, M.; Sully, J.; Van Raamsdonk, M.; Waddell, C.; Wakeham, D., Information radiation in BCFT models of black holes, JHEP, 05, 004 (2020) · Zbl 1437.83117 · doi:10.1007/JHEP05(2020)004
[15] Bousso, R.; Tomašević, M., Unitarity From a Smooth Horizon?, Phys. Rev. D, 102, 106019 (2020) · doi:10.1103/PhysRevD.102.106019
[16] Balasubramanian, V.; Kar, A.; Parrikar, O.; Sárosi, G.; Ugajin, T., Geometric secret sharing in a model of Hawking radiation, JHEP, 01, 177 (2021) · Zbl 1459.83023 · doi:10.1007/JHEP01(2021)177
[17] Hartman, T.; Shaghoulian, E.; Strominger, A., Islands in Asymptotically Flat 2D Gravity, JHEP, 07, 022 (2020) · Zbl 1455.83017 · doi:10.1007/JHEP07(2020)022
[18] Faulkner, T.; Lewkowycz, A.; Maldacena, J., Quantum corrections to holographic entanglement entropy, JHEP, 11, 074 (2013) · Zbl 1392.81021 · doi:10.1007/JHEP11(2013)074
[19] Sully, J.; Raamsdonk, MV; Wakeham, D., BCFT entanglement entropy at large central charge and the black hole interior, JHEP, 03, 167 (2021) · Zbl 1461.81074 · doi:10.1007/JHEP03(2021)167
[20] Chen, HZ; Myers, RC; Neuenfeld, D.; Reyes, IA; Sandor, J., Quantum Extremal Islands Made Easy, Part I: Entanglement on the Brane, JHEP, 10, 166 (2020) · Zbl 1456.81332
[21] Chen, HZ; Myers, RC; Neuenfeld, D.; Reyes, IA; Sandor, J., Quantum Extremal Islands Made Easy, Part II: Black Holes on the Brane, JHEP, 12, 025 (2020) · Zbl 1457.81084 · doi:10.1007/JHEP12(2020)025
[22] Hernandez, J.; Myers, RC; Ruan, S-M, Quantum extremal islands made easy. Part III. Complexity on the brane, JHEP, 02, 173 (2021) · Zbl 1460.81072 · doi:10.1007/JHEP02(2021)173
[23] Chen, HZ; Fisher, Z.; Hernandez, J.; Myers, RC; Ruan, S-M, Evaporating Black Holes Coupled to a Thermal Bath, JHEP, 01, 065 (2021) · Zbl 1459.83032 · doi:10.1007/JHEP01(2021)065
[24] Geng, H.; Karch, A., Massive islands, JHEP, 09, 121 (2020) · Zbl 1454.83113 · doi:10.1007/JHEP09(2020)121
[25] Geng, H., Information Transfer with a Gravitating Bath, SciPost Phys., 10, 103 (2021) · doi:10.21468/SciPostPhys.10.5.103
[26] Geng, H.; Lüst, S.; Mishra, RK; Wakeham, D., Holographic BCFTs and Communicating Black Holes, jhep, 08, 003 (2021) · Zbl 1469.83028 · doi:10.1007/JHEP08(2021)003
[27] Calabrese, P.; Cardy, JL, Entanglement entropy and quantum field theory, J. Stat. Mech., 0406 (2004) · Zbl 1082.82002
[28] Fiola, TM; Preskill, J.; Strominger, A.; Trivedi, SP, Black hole thermodynamics and information loss in two-dimensions, Phys. Rev. D, 50, 3987 (1994) · doi:10.1103/PhysRevD.50.3987
[29] S. Colin-Ellerin, X. Dong, D. Marolf, M. Rangamani and Z. Wang, Real-time gravitational replicas: Low dimensional examples, arXiv:2105.07002 [INSPIRE]. · Zbl 1469.83003
[30] Colin-Ellerin, S.; Dong, X.; Marolf, D.; Rangamani, M.; Wang, Z., Real-time gravitational replicas: Formalism and a variational principle, JHEP, 05, 117 (2021) · Zbl 1466.83026 · doi:10.1007/JHEP05(2021)117
[31] S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett.70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
[32] A. Kitaev, A simple model of quantum holography (part 1), talk at KITP, April 7, 2015, http://online.kitp.ucsb.edu/online/entangled15/kitaev/.
[33] A. Kitaev, A simple model of quantum holography (part 2), talk at KITP, May 27, 2015, http://online.kitp.ucsb.edu/online/entangled15/kitaev2/.
[34] Chen, Y.; Gorbenko, V.; Maldacena, J., Bra-ket wormholes in gravitationally prepared states, JHEP, 02, 009 (2021) · Zbl 1460.83059 · doi:10.1007/JHEP02(2021)009
[35] Polyakov, AM, Gauge Fields and Strings, Contemp. Concepts Phys., 3, 1 (1987) · Zbl 1440.81010
[36] J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].
[37] Gao, P.; Jafferis, DL; Wall, AC, Traversable Wormholes via a Double Trace Deformation, JHEP, 12, 151 (2017) · Zbl 1383.83054 · doi:10.1007/JHEP12(2017)151
[38] L. Anderson, O. Parrikar and R. M. Soni, Islands with Gravitating Baths: Towards ER = EP R, arXiv:2103.14746 [INSPIRE]. · Zbl 1476.83038
[39] V. Balasubramanian, A. Kar and T. Ugajin, Entanglement between two gravitating universes, arXiv:2104.13383 [INSPIRE]. · Zbl 1460.81006
[40] P. Saad, S. H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115 [INSPIRE].
[41] Stanford, D.; Witten, E., JT gravity and the ensembles of random matrix theory, Adv. Theor. Math. Phys., 24, 1475 (2020) · Zbl 1527.83071 · doi:10.4310/ATMP.2020.v24.n6.a4
[42] Aref’eva, I.; Khramtsov, M.; Tikhanovskaya, M.; Volovich, I., Replica-nondiagonal solutions in the SYK model, JHEP, 07, 113 (2019) · Zbl 1418.83035 · doi:10.1007/JHEP07(2019)113
[43] Witten, E., Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys., 2, 505 (1998) · Zbl 1057.81550 · doi:10.4310/ATMP.1998.v2.n3.a3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.