×

Higher-group symmetry in finite gauge theory and stabilizer codes. (English) Zbl 07912384

Summary: A large class of gapped phases of matter can be described by topological finite group gauge theories. In this paper, we show how such gauge theories possess a higher-group global symmetry, which we study in detail. We derive the \(d\)-group global symmetry and its ’t Hooft anomaly for topological finite group gauge theories in \((d+1)\) space-time dimensions, including non-Abelian gauge groups and Dijkgraaf-Witten twists. We focus on the 1-form symmetry generated by invertible (Abelian) magnetic defects and the higher-form symmetries generated by invertible topological defects decorated with lower dimensional gauged symmetry-protected topological (SPT) phases. We show that due to a generalization of the Witten effect and charge-flux attachment, the 1-form symmetry generated by the magnetic defects mixes with other symmetries into a higher group. We describe such higher-group symmetry in various lattice model examples. We discuss several applications, including the classification of fermionic SPT phases in (3+1)D for general fermionic symmetry groups, where we also derive a simpler formula for the \([O_5]\in H^5(BG, U(1))\) obstruction that has appeared in prior work. We also show how the \(d\)-group symmetry is related to fault-tolerant non-Pauli logical gates and a refined Clifford hierarchy in stabilizer codes. We discover new logical gates in stabilizer codes using the \(d\)-group symmetry, such as a controlled Z gate in the (3+1)D \(\mathbb{Z}_2\) toric code.

MSC:

81Txx Quantum field theory; related classical field theories
83Exx Unified, higher-dimensional and super field theories
81Pxx Foundations, quantum information and its processing, quantum axioms, and philosophy

References:

[1] G. Moore and N. Seiberg, Classical and quantum conformal field theory, Commun. Math. Phys. 123, 177 (1989), doi:10.1007/BF01238857. · Zbl 0694.53074 · doi:10.1007/BF01238857
[2] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121, 351 (1989), doi:10.1007/BF01217730. · Zbl 0667.57005 · doi:10.1007/BF01217730
[3] G. Moore and N. Read, Nonabelions in the fractional quantum Hall effect, Nucl. Phys. B 360, 362 (1991), doi:10.1016/0550-3213(91)90407-O. · doi:10.1016/0550-3213(91)90407-O
[4] X. G. Wen, Non-Abelian statistics in the fractional quantum Hall states, Phys. Rev. Lett. 66, 802 (1991), doi:10.1103/PhysRevLett.66.802. · Zbl 0968.81553 · doi:10.1103/PhysRevLett.66.802
[5] A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2 (2006), doi:10.1016/j.aop.2005.10.005. · Zbl 1125.82009 · doi:10.1016/j.aop.2005.10.005
[6] P. Bonderson, Non-Abelian anyons and interferometry, PhD thesis, California Institute of Technology, Pasadena, USA (2007), doi:10.7907/5NDZ-W890. · doi:10.7907/5NDZ-W890
[7] C. Nayak, S. H. Simon, A. Stern, M. Freedman and S. Das Sarma, Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys. 80, 1083 (2008), doi:10.1103/RevModPhys.80.1083. · Zbl 1205.81062 · doi:10.1103/RevModPhys.80.1083
[8] Z. Wang, Topological quantum computation, American Mathematical Society, Provi-dence, USA, ISBN 9780821849309 (2008).
[9] K. Kawagoe and M. Levin, Microscopic definitions of anyon data, Phys. Rev. B 101, 115113 (2020), doi:10.1103/PhysRevB.101.115113. · doi:10.1103/PhysRevB.101.115113
[10] A. Kapustin and N. Saulina, Topological boundary conditions in Abelian Chern-Simons theory, Nucl. Phys. B 845, 393 (2011), doi:10.1016/j.nuclphysb.2010.12.017. · Zbl 1207.81060 · doi:10.1016/j.nuclphysb.2010.12.017
[11] A. Kitaev and L. Kong, Models for gapped boundaries and domain walls, Commun. Math. Phys. 313, 351 (2012), doi:10.1007/s00220-012-1500-5. · Zbl 1250.81141 · doi:10.1007/s00220-012-1500-5
[12] M. Barkeshli and X.-L. Qi, Topological nematic states and non-Abelian lattice dislocations, Phys. Rev. X 2, 031013 (2012), doi:10.1103/PhysRevX.2.031013. · doi:10.1103/PhysRevX.2.031013
[13] D. J. Clarke, J. Alicea and K. Shtengel, Exotic non-Abelian anyons from conventional frac-tional quantum Hall states, Nat. Commun. 4, 1348 (2013), doi:10.1038/ncomms2340. · doi:10.1038/ncomms2340
[14] N. H. Lindner, E. Berg, G. Refael and A. Stern, Fractionalizing Majorana fermions: Non-Abelian statistics on the edges of Abelian quantum Hall states, Phys. Rev. X 2, 041002 (2012), doi:10.1103/PhysRevX.2.041002. · doi:10.1103/PhysRevX.2.041002
[15] M. Cheng, Superconducting proximity effect on the edge of fractional topological insula-tors, Phys. Rev. B 86, 195126 (2012), doi:10.1103/PhysRevB.86.195126. · doi:10.1103/PhysRevB.86.195126
[16] M. Barkeshli, C.-M. Jian and X.-L. Qi, Twist defects and projective non-Abelian braiding statistics, Phys. Rev. B 87, 045130 (2013), doi:10.1103/PhysRevB.87.045130. · doi:10.1103/PhysRevB.87.045130
[17] Y.-Z. You and X.-G. Wen, Projective non-Abelian statistics of dislocation defects in a N rotor model, Phys. Rev. B 86, 161107 (2012), doi:10.1103/PhysRevB.86.161107. · doi:10.1103/PhysRevB.86.161107
[18] M. Barkeshli, C.-M. Jian and X.-L. Qi, Classification of topological defects in Abelian topo-logical states, Phys. Rev. B 88, 241103 (2013), doi:10.1103/PhysRevB.88.241103. · doi:10.1103/PhysRevB.88.241103
[19] M. Barkeshli, C.-M. Jian and X.-L. Qi, Theory of defects in Abelian topological states, Phys. Rev. B 88, 235103 (2013), doi:10.1103/PhysRevB.88.235103. · doi:10.1103/PhysRevB.88.235103
[20] A. Kapustin, Topological field theory, higher categories and their applications, in In-ternational congress of mathematicians, Hyderabad, India (2010), (arXiv preprint) doi:10.48550/arXiv.1004.2307. · doi:10.48550/arXiv.1004.2307
[21] C. L. Douglas and D. J. Reutter, Fusion 2-categories and a state-sum invariant for 4-manifolds, (arXiv preprint) doi:10.48550/arXiv.1812.11933. · doi:10.48550/arXiv.1812.11933
[22] P. Etingof, D. Nikshych and V. Ostrik, Fusion categories and homotopy theory, Quantum Topol. 1, 209 (2010), doi:10.4171/QT/6. · Zbl 1214.18007 · doi:10.4171/QT/6
[23] M. Barkeshli, P. Bonderson, M. Cheng and Z. Wang, Symmetry fractionaliza-tion, defects and gauging of topological phases, Phys. Rev. B 100, 115147 (2019), doi:10.1103/PhysRevB.100.115147. · doi:10.1103/PhysRevB.100.115147
[24] C. Jones, D. Penneys and D. Reutter, A 3-categorical perspective on g-crossed braided categories, J. Lond. Math. Soc. 107, 333 (2017), doi:10.1112/jlms.12687. · Zbl 1518.18017 · doi:10.1112/jlms.12687
[25] D. Bulmash and M. Barkeshli, Fermionic symmetry fractionalization in (2 + 1) dimen-sions, Phys. Rev. B 105, 125114 (2022), doi:10.1103/PhysRevB.105.125114. · doi:10.1103/PhysRevB.105.125114
[26] D. Aasen, P. Bonderson and C. Knapp, Characterization and classification of fermionic symmetry enriched topological phases, (arXiv preprint) doi:10.48550/arXiv.2109.10911. · doi:10.48550/arXiv.2109.10911
[27] A. Kitaev, Toward a topological classification of many-body quantum states with short-range entanglement, in Topological quantum computing, Stony Brook University, New York, USA (2011), http://scgp.stonybrook.edu/video_portal/video.php?id=336.
[28] X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry protected topological orders and the group cohomology of their symmetry group, Phys. Rev. B 87, 155114 (2013), doi:10.1103/PhysRevB.87.155114. · doi:10.1103/PhysRevB.87.155114
[29] A. Kapustin, Symmetry protected topological phases, anomalies and cobordisms: Beyond group cohomology, (arXiv preprint) doi:10.48550/arXiv.1403.1467. · doi:10.48550/arXiv.1403.1467
[30] A. Kapustin, Bosonic topological insulators and paramagnets: A view from cobordisms, (arXiv preprint) doi:10.48550/arXiv.1404.6659. · doi:10.48550/arXiv.1404.6659
[31] A. Kapustin, R. Thorngren, A. Turzillo and Z. Wang, Fermionic symmetry pro-tected topological phases and cobordisms, J. High Energy Phys. 12, 001 (2015), doi:10.1007/JHEP12(2015)052. · Zbl 1388.81845 · doi:10.1007/JHEP12(2015)052
[32] D. S. Freed and M. J. Hopkins, Reflection positivity and invertible topological phases, Geom. Topol. 25, 1165 (2021), doi:10.2140/gt.2021.25.1165. · Zbl 1508.81953 · doi:10.2140/gt.2021.25.1165
[33] Q.-R. Wang and Z.-C. Gu, Towards a complete classification of symmetry-protected topo-logical phases for interacting fermions in three dimensions and a general group superco-homology theory, Phys. Rev. X 8, 011055 (2018), doi:10.1103/PhysRevX.8.011055. · doi:10.1103/PhysRevX.8.011055
[34] Q.-R. Wang and Z.-C. Gu, Construction and classification of symmetry-protected topo-logical phases in interacting fermion systems, Phys. Rev. X 10, 031055 (2020), doi:10.1103/PhysRevX.10.031055. · doi:10.1103/PhysRevX.10.031055
[35] M. Barkeshli, Y.-A. Chen, P.-S. Hsin and N. Manjunath, Classification of (2 + 1)D in-vertible fermionic topological phases with symmetry, Phys. Rev. B 105, 235143 (2022), doi:10.1103/physrevb.105.235143. · doi:10.1103/physrevb.105.235143
[36] D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, J. High Energy Phys. 02, 172 (2015), doi:10.1007/JHEP02(2015)172. · Zbl 1388.83656 · doi:10.1007/JHEP02(2015)172
[37] X.-G. Wen, Emergent anomalous higher symmetries from topological order and from dy-namical electromagnetic field in condensed matter systems, Phys. Rev. B 99, 205139 (2019), doi:10.1103/PhysRevB.99.205139. · doi:10.1103/PhysRevB.99.205139
[38] J. McGreevy, Generalized symmetries in condensed matter, Annu. Rev. Condens. Matter Phys. 14, 57 (2023), doi:10.1146/annurev-conmatphys-040721-021029. · doi:10.1146/annurev-conmatphys-040721-021029
[39] A. Kapustin and R. Thorngren, Higher symmetry and gapped phases of gauge theories, in Algebra, geometry and physics in the 21st century, Birkhäuser, Cham, Switzerland, ISBN 9783319599380 (2017), doi:10.1007/978-3-319-59939-7_5. · Zbl 1385.81034 · doi:10.1007/978-3-319-59939-7_5
[40] C. Córdova, T. T. Dumitrescu and K. Intriligator, Exploring 2-group global symmetries, J. High Energy Phys. 02, 184 (2019), doi:10.1007/JHEP02(2019)184. · Zbl 1411.83116 · doi:10.1007/JHEP02(2019)184
[41] F. Benini, C. Córdova and P.-S. Hsin, On 2-group global symmetries and their anomalies, J. High Energy Phys. 03, 118 (2019), doi:10.1007/JHEP03(2019)118. · Zbl 1414.81223 · doi:10.1007/JHEP03(2019)118
[42] M. Barkeshli and M. Cheng, Time-reversal and spatial-reflection symmetry localization anomalies in (2 + 1)-dimensional topological phases of matter, Phys. Rev. B 98, 115129 (2018), doi:10.1103/PhysRevB.98.115129. · doi:10.1103/PhysRevB.98.115129
[43] L. Fidkowski and A. Vishwanath, Realizing anomalous anyonic symmetries at the surfaces of three-dimensional gauge theories, Phys. Rev. B 96, 045131 (2017), doi:10.1103/physrevb.96.045131. · doi:10.1103/physrevb.96.045131
[44] P.-S. Hsin and A. Turzillo, Symmetry-enriched quantum spin liquids in (3 + 1)d, J. High Energy Phys. 09, 022 (2020), doi:10.1007/JHEP09(2020)022. · Zbl 1454.83137 · doi:10.1007/JHEP09(2020)022
[45] Y. Tanizaki and M. Ünsal, Modified instanton sum in QCD and higher-groups, J. High Energy Phys. 03, 123 (2020), doi:10.1007/JHEP03(2020)123. · Zbl 1435.83187 · doi:10.1007/JHEP03(2020)123
[46] A. Cherman and T. Jacobson, Lifetimes of near eternal false vacua, Phys. Rev. D 103, 105012 (2021), doi:10.1103/PhysRevD.103.105012. · doi:10.1103/PhysRevD.103.105012
[47] T. D. Brennan and C. Córdova, Axions, higher-groups and emergent symmetry, J. High Energy Phys. 02, 145 (2022), doi:10.1007/JHEP02(2022)145. · Zbl 1522.81183 · doi:10.1007/JHEP02(2022)145
[48] N. Iqbal and N. Poovuttikul, 2-group global symmetries, hydrodynamics and holography, SciPost Phys. 15, 063 (2023), doi:10.21468/SciPostPhys.15.2.063. · Zbl 07904998 · doi:10.21468/SciPostPhys.15.2.063
[49] B. Heidenreich, J. McNamara, M. Montero, M. Reece, T. Rudelius and I. Valenzuela, Chern-Weil global symmetries and how quantum gravity avoids them, J. High Energy Phys. 11, 053 (2021), doi:10.1007/JHEP11(2021)053. · Zbl 1521.81229 · doi:10.1007/JHEP11(2021)053
[50] C. Córdova, T. T. Dumitrescu and K. Intriligator, 2-group global symmetries and anoma-lies in six-dimensional quantum field theories, J. High Energy Phys. 04, 252 (2021), doi:10.1007/JHEP04(2021)252. · Zbl 1462.81128 · doi:10.1007/JHEP04(2021)252
[51] S. Gukov, P.-S. Hsin and D. Pei, Generalized global symmetries of T[M] theories. Part I, J. High Energy Phys. 04, 232 (2021), doi:10.1007/JHEP04(2021)232. · Zbl 1462.83070 · doi:10.1007/JHEP04(2021)232
[52] F. Apruzzi, L. Bhardwaj, D. S. W. Gould and S. Schäfer-Nameki, 2-group symmetries and their classification in 6d, SciPost Phys. 12, 098 (2022), doi:10.21468/SciPostPhys.12.3.098. · doi:10.21468/SciPostPhys.12.3.098
[53] P.-S. Hsin, W. Ji and C.-M. Jian, Exotic invertible phases with higher-group symmetries, SciPost Phys. 12, 052 (2022), doi:10.21468/SciPostPhys.12.2.052. · doi:10.21468/SciPostPhys.12.2.052
[54] Y.-A. Chen, T. D. Ellison and N. Tantivasadakarn, Disentangling supercohomology symmetry-protected topological phases in three spatial dimensions, Phys. Rev. Res. 3, 013056 (2021), doi:10.1103/PhysRevResearch.3.013056. · doi:10.1103/PhysRevResearch.3.013056
[55] O. DeWolfe and K. Higginbotham, Generalized symmetries and 2-groups via electromagnetic duality in AdS/CFT, Phys. Rev. D 103, 026011 (2021), doi:10.1103/PhysRevD.103.026011. · doi:10.1103/PhysRevD.103.026011
[56] Y. Hidaka, M. Nitta and R. Yokokura, Global 4-group symmetry and ’t Hooft anoma-lies in topological axion electrodynamics, Prog. Theor. Exp. Phys. 04A109 (2021), doi:10.1093/ptep/ptab150. · Zbl 1497.81081 · doi:10.1093/ptep/ptab150
[57] D. G. Delmastro, J. Gomis, P.-S. Hsin and Z. Komargodski, Anomalies and symmetry fractionalization, SciPost Phys. 15, 079 (2023), doi:10.21468/SciPostPhys.15.3.079. · Zbl 07905014 · doi:10.21468/SciPostPhys.15.3.079
[58] C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, Topological defect lines and renormalization group flows in two dimensions, J. High Energy Phys. 01, 026 (2019), doi:10.1007/JHEP01(2019)026. · Zbl 1409.81134 · doi:10.1007/JHEP01(2019)026
[59] R. Thorngren and Y. Wang, Fusion category symmetry I: Anomaly in-flow and gapped phases, (arXiv preprint) doi:10.48550/arXiv.1912.02817. · Zbl 07865702 · doi:10.48550/arXiv.1912.02817
[60] Y. Choi, C. Córdova, P.-S. Hsin, H. T. Lam and S.-H. Shao, Noninvert-ible duality defects in 3 + 1 dimensions, Phys. Rev. D 105, 125016 (2022), doi:10.1103/PhysRevD.105.125016. · doi:10.1103/PhysRevD.105.125016
[61] J. Kaidi, K. Ohmori and Y. Zheng, Kramers-Wannier-like duality defects in (3 + 1)D gauge theories, Phys. Rev. Lett. 128, 111601 (2022), doi:10.1103/PhysRevLett.128.111601. · doi:10.1103/PhysRevLett.128.111601
[62] Y. Choi, C. Córdova, P.-S. Hsin, H. T. Lam and S.-H. Shao, Non-invertible condensation, duality and triality defects in 3 + 1 dimensions, Commun. Math. Phys. 402, 489 (2023), doi:10.1007/s00220-023-04727-4. · Zbl 1529.81086 · doi:10.1007/s00220-023-04727-4
[63] K. Roumpedakis, S. Seifnashri and S.-H. Shao, Higher gauging and non-invertible con-densation defects, Commun. Math. Phys. 401, 3043 (2023), doi:10.1007/s00220-023-04706-9. · Zbl 07719639 · doi:10.1007/s00220-023-04706-9
[64] T. Bartsch, M. Bullimore, A. E. V. Ferrari and J. Pearson, Non-invertible symmetries and higher representation theory I, (arXiv preprint) doi:10.48550/arXiv.2208.05993. · doi:10.48550/arXiv.2208.05993
[65] L. Bhardwaj, S. Schäfer-Nameki and J. Wu, Universal non-invertible symmetries, Fortschr. Phys. 70, 2200143 (2022), doi:10.1002/prop.202200143. · Zbl 07768715 · doi:10.1002/prop.202200143
[66] V. Bashmakov, M. Del Zotto and A. Hasan, On the 6d origin of non-invertible symmetries in 4d, J. High Energy Phys. 09, 161 (2023), doi:10.1007/JHEP09(2023)161. · Zbl 07754740 · doi:10.1007/JHEP09(2023)161
[67] C. Córdova and K. Ohmori, Non-invertible chiral symmetry and exponential hierarchies, Phys. Rev. X 13, 011034 (2023), doi:10.1103/PhysRevX.13.011034. · doi:10.1103/PhysRevX.13.011034
[68] Y. Choi, H. T. Lam and S.-H. Shao, Noninvertible global symmetries in the Standard Model, Phys. Rev. Lett. 129, 161601 (2022), doi:10.1103/PhysRevLett.129.161601. · doi:10.1103/PhysRevLett.129.161601
[69] C. Córdova, S. Hong, S. Koren and K. Ohmori, Neutrino masses from generalized sym-metry breaking, (arXiv preprint) doi:10.48550/arXiv.2211.07639. · doi:10.48550/arXiv.2211.07639
[70] A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003), doi:10.1016/S0003-4916(02)00018-0. · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[71] H. Bombin, G. Duclos-Cianci and D. Poulin, Universal topological phase of two-dimensional stabilizer codes, New J. Phys. 14, 073048 (2012), doi:10.1088/1367-2630/14/7/073048. · Zbl 1448.81223 · doi:10.1088/1367-2630/14/7/073048
[72] Y. Hu, Y. Wan and Y.-S. Wu, Twisted quantum double model of topological phases in two dimensions, Phys. Rev. B 87, 125114 (2013), doi:10.1103/PhysRevB.87.125114. · doi:10.1103/PhysRevB.87.125114
[73] H. Moradi and X.-G. Wen, Universal topological data for gapped quantum liquids in three dimensions and fusion algebra for non-Abelian string excitations, Phys. Rev. B 91, 075114 (2015), doi:10.1103/PhysRevB.91.075114. · doi:10.1103/PhysRevB.91.075114
[74] Z. Wang and X. Chen, Twisted gauge theories in three-dimensional Walker-Wang models, Phys. Rev. B 95, 115142 (2017), doi:10.1103/PhysRevB.95.115142. · doi:10.1103/PhysRevB.95.115142
[75] T. D. Ellison, Y.-A. Chen, A. Dua, W. Shirley, N. Tantivasadakarn and D. J. Williamson, Pauli stabilizer models of twisted quantum doubles, PRX Quantum 3, 010353 (2022), doi:10.1103/PRXQuantum.3.010353. · doi:10.1103/PRXQuantum.3.010353
[76] T. Lan, L. Kong and X.-G. Wen, Classification of (3 + 1)D bosonic topological orders: The case when pointlike excitations are all bosons, Phys. Rev. X 8, 021074 (2018), doi:10.1103/PhysRevX.8.021074. · doi:10.1103/PhysRevX.8.021074
[77] T. Johnson-Freyd, On the classification of topological orders, Commun. Math. Phys. 393, 989 (2022), doi:10.1007/s00220-022-04380-3. · Zbl 1507.81169 · doi:10.1007/s00220-022-04380-3
[78] T. Lan and X.-G. Wen, Classification of 3 + 1D bosonic topological orders (II): The case when some pointlike excitations are fermions, Phys. Rev. X 9, 021005 (2019), doi:10.1103/PhysRevX.9.021005. · doi:10.1103/PhysRevX.9.021005
[79] A. A. Abrikosov, Magnetic properties of superconductors of the second group, Sov. J. Exp. Theor. Phys. 5, 1174 (1957).
[80] H. B. Nielsen and P. Olesen, Vortex-line models for dual strings, Nucl. Phys. B 61, 45 (1973), doi:10.1016/0550-3213(73)90350-7. · doi:10.1016/0550-3213(73)90350-7
[81] J. Preskill, Vortices and monopoles, in Les Houches school of theoretical physics: Architec-ture of fundamental interactions at short distances, Elsevier, Amsterdam, Netherlands, ISBN 9780444870544 (1987).
[82] R. Dijkgraaf and E. Witten, Topological gauge theories and group cohomology, Commun. Math. Phys. 129, 393 (1990), doi:10.1007/BF02096988. · Zbl 0703.58011 · doi:10.1007/BF02096988
[83] M. Barkeshli, Y.-A. Chen, S.-J. Huang, R. Kobayashi, N. Tantivasadakarn and G. Zhu, Codimension-2 defects and higher symmetries in (3 + 1)D topological phases, SciPost Phys. 14, 065 (2023), doi:10.21468/SciPostPhys.14.4.065. · Zbl 07901919 · doi:10.21468/SciPostPhys.14.4.065
[84] E. Witten, Dyons of charge eθ /2π, Phys. Lett. B 86, 283 (1979), doi:10.1016/0370-2693(79)90838-4. · doi:10.1016/0370-2693(79)90838-4
[85] P.-S. Hsin, Non-invertible defects in nonlinear sigma models and coupling to topological orders, (arXiv preprint) doi:10.48550/arXiv.2212.08608. · doi:10.48550/arXiv.2212.08608
[86] D. Gottesman, Stabilizer codes and quantum error correction, (arXiv preprint) doi:10.48550/arXiv.quant-ph/9705052. · doi:10.48550/arXiv.quant-ph/9705052
[87] P. Webster and S. D. Bartlett, Locality-preserving logical operators in topological stabilizer codes, Phys. Rev. A 97, 012330 (2018), doi:10.1103/PhysRevA.97.012330. · doi:10.1103/PhysRevA.97.012330
[88] B. Yoshida, Topological color code and symmetry-protected topological phases, Phys. Rev. B 91, 245131 (2015), doi:10.1103/PhysRevB.91.245131. · doi:10.1103/PhysRevB.91.245131
[89] B. Yoshida, Topological phases with generalized global symmetries, Phys. Rev. B 93, 155131 (2016), doi:10.1103/PhysRevB.93.155131. · doi:10.1103/PhysRevB.93.155131
[90] B. Yoshida, Gapped boundaries, group cohomology and fault-tolerant logical gates, Ann. Phys. 377, 387 (2017), doi:10.1016/j.aop.2016.12.014. · Zbl 1368.81065 · doi:10.1016/j.aop.2016.12.014
[91] P. Webster and S. D. Bartlett, Fault-tolerant quantum gates with defects in topological stabilizer codes, Phys. Rev. A 102, 022403 (2020), doi:10.1103/physreva.102.022403. · doi:10.1103/physreva.102.022403
[92] G. Zhu, T. Jochym-O’Connor and A. Dua, Topological order, quantum codes and quantum computation on fractal geometries, PRX Quantum 3, 030338 (2022), doi:10.1103/PRXQuantum.3.030338. · doi:10.1103/PRXQuantum.3.030338
[93] S. Bravyi and R. König, Classification of topologically protected gates for local stabilizer codes, Phys. Rev. Lett. 110, 170503 (2013), doi:10.1103/physrevlett.110.170503. · doi:10.1103/physrevlett.110.170503
[94] C. Córdova and K. Ohmori, Anomaly obstructions to symmetry preserving gapped phases, (arXiv preprint) doi:10.48550/arXiv.1910.04962. · doi:10.48550/arXiv.1910.04962
[95] E. Lieb, T. Schultz and D. Mattis, Two soluble models of an antiferromagnetic chain, Ann. Phys. 16, 407 (1961), doi:10.1016/0003-4916(61)90115-4. · Zbl 0129.46401 · doi:10.1016/0003-4916(61)90115-4
[96] M. Oshikawa, Topological approach to Luttinger’s theorem and the Fermi surface of a Kondo lattice, Phys. Rev. Lett. 84, 3370 (2000), doi:10.1103/PhysRevLett.84.3370. · doi:10.1103/PhysRevLett.84.3370
[97] M. B. Hastings, Lieb-Schultz-Mattis in higher dimensions, Phys. Rev. B 69, 104431 (2004), doi:10.1103/PhysRevB.69.104431. · doi:10.1103/PhysRevB.69.104431
[98] M. Cheng, M. Zaletel, M. Barkeshli, A. Vishwanath and P. Bonderson, Translational sym-metry and microscopic constraints on symmetry-enriched topological phases: A view from the surface, Phys. Rev. X 6, 041068 (2016), doi:10.1103/PhysRevX.6.041068. · doi:10.1103/PhysRevX.6.041068
[99] G. Y. Cho, C.-T. Hsieh and S. Ryu, Anomaly manifestation of Lieb-Schultz-Mattis theorem and topological phases, Phys. Rev. B 96, 195105 (2017), doi:10.1103/PhysRevB.96.195105. · doi:10.1103/PhysRevB.96.195105
[100] M. A. Metlitski and R. Thorngren, Intrinsic and emergent anomalies at deconfined critical points, Phys. Rev. B 98, 085140 (2018), doi:10.1103/PhysRevB.98.085140. · doi:10.1103/PhysRevB.98.085140
[101] R. Kobayashi, K. Shiozaki, Y. Kikuchi and S. Ryu, Lieb-Schultz-Mattis type theorem with higher-form symmetry and the quantum dimer models, Phys. Rev. B 99, 014402 (2019), doi:10.1103/PhysRevB.99.014402. · doi:10.1103/PhysRevB.99.014402
[102] L. Bhardwaj, D. Gaiotto and A. Kapustin, State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter, J. High Energy Phys. 04, 096 (2017), doi:10.1007/JHEP04(2017)096. · Zbl 1378.81128 · doi:10.1007/JHEP04(2017)096
[103] Y.-A. Chen, A. Kapustin and Ð. Radičević, Exact bosonization in two spatial di-mensions and a new class of lattice gauge theories, Ann. Phys. 393, 234 (2018), doi:10.1016/j.aop.2018.03.024. · Zbl 1390.81392 · doi:10.1016/j.aop.2018.03.024
[104] Y.-A. Chen and A. Kapustin, Bosonization in three spatial dimensions and a 2-form gauge theory, Phys. Rev. B 100, 245127 (2019), doi:10.1103/PhysRevB.100.245127. · doi:10.1103/PhysRevB.100.245127
[105] Y.-A. Chen, Exact bosonization in arbitrary dimensions, Phys. Rev. Res. 2, 033527 (2020), doi:10.1103/PhysRevResearch.2.033527. · doi:10.1103/PhysRevResearch.2.033527
[106] Y.-A. Chen, T. D. Ellison and N. Tantivasadakarn, Disentangling supercohomology symmetry-protected topological phases in three spatial dimensions, Phys. Rev. Res. 3, 013056 (2021), doi:10.1103/PhysRevResearch.3.013056. · doi:10.1103/PhysRevResearch.3.013056
[107] S. Gukov and E. Witten, Rigid surface operators, Adv. Theor. Math. Phys. 14, 87 (2010), doi:10.4310/ATMP.2010.v14.n1.a3. · Zbl 1203.81114 · doi:10.4310/ATMP.2010.v14.n1.a3
[108] C. G. Callan, R. F. Dashen and D. J. Gross, The structure of the gauge theory vacuum, Phys. Lett. B 63, 334 (1976), doi:10.1016/0370-2693(76)90277-X. · doi:10.1016/0370-2693(76)90277-X
[109] R. Jackiw and C. Rebbi, Vacuum periodicity in a Yang-Mills quantum theory, Phys. Rev. Lett. 37, 172 (1976), doi:10.1103/PhysRevLett.37.172. · doi:10.1103/PhysRevLett.37.172
[110] O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge theories, J. High Energy Phys. 08, 115 (2013), doi:10.1007/JHEP08(2013)115. · Zbl 1342.81248 · doi:10.1007/JHEP08(2013)115
[111] P.-S. Hsin and H. T. Lam, Discrete theta angles, symmetries and anomalies, SciPost Phys. 10, 032 (2021), doi:10.21468/SciPostPhys.10.2.032. · doi:10.21468/SciPostPhys.10.2.032
[112] A. S. Goldhaber, Connection of spin and statistics for charge-monopole composites, Phys. Rev. Lett. 36, 1122 (1976), doi:10.1103/PhysRevLett.36.1122. · doi:10.1103/PhysRevLett.36.1122
[113] M. A. Metlitski, C. L. Kane and M. P. A. Fisher, Bosonic topological insulator in three dimensions and the statistical Witten effect, Phys. Rev. B 88, 035131 (2013), doi:10.1103/PhysRevB.88.035131. · doi:10.1103/PhysRevB.88.035131
[114] J. P. Ang, K. Roumpedakis and S. Seifnashri, Line operators of gauge theories on non-spin manifolds, J. High Energy Phys. 04, 087 (2020), doi:10.1007/JHEP04(2020)087. · Zbl 1436.81123 · doi:10.1007/JHEP04(2020)087
[115] D. Arovas, J. R. Schrieffer and F. Wilczek, Fractional statistics and the quantum Hall effect, Phys. Rev. Lett. 53, 722 (1984), doi:10.1103/PhysRevLett.53.722. · doi:10.1103/PhysRevLett.53.722
[116] S. C. Zhang, T. H. Hansson and S. Kivelson, Effective-field-theory model for the fractional quantum Hall effect, Phys. Rev. Lett. 62, 82 (1989), doi:10.1103/PhysRevLett.62.82. · doi:10.1103/PhysRevLett.62.82
[117] A. L. Fetter, C. B. Hanna and R. B. Laughlin, Random-phase approximation in the fractional-statistics gas, Phys. Rev. B 39, 9679 (1989), doi:10.1103/PhysRevB.39.9679. · doi:10.1103/PhysRevB.39.9679
[118] A. Lopez and E. Fradkin, Fractional quantum Hall effect and Chern-Simons gauge theories, Phys. Rev. B 44, 5246 (1991), doi:10.1103/PhysRevB.44.5246. · doi:10.1103/PhysRevB.44.5246
[119] P.-S. Hsin and N. Seiberg, Level/rank duality and Chern-Simons-matter theories, J. High Energy Phys. 09, 095 (2016), doi:10.1007/JHEP09(2016)095. · Zbl 1390.81214 · doi:10.1007/JHEP09(2016)095
[120] O. Aharony, F. Benini, P.-S. Hsin and N. Seiberg, Chern-Simons-matter duali-ties with SO and USp gauge groups, J. High Energy Phys. 02, 072 (2017), doi:10.1007/JHEP02(2017)072. · Zbl 1377.58018 · doi:10.1007/JHEP02(2017)072
[121] K. Jensen and A. O’Bannon, Constraint on defect and boundary renormalization group flows, Phys. Rev. Lett. 116, 091601 (2016), doi:10.1103/PhysRevLett.116.091601. · doi:10.1103/PhysRevLett.116.091601
[122] P. Niro, K. Roumpedakis and O. Sela, Exploring non-invertible symmetries in free theories, J. High Energy Phys. 03, 005 (2023), doi:10.1007/JHEP03(2023)005. · Zbl 07690569 · doi:10.1007/JHEP03(2023)005
[123] D. V. Else and C. Nayak, Cheshire charge in (3 + 1)-dimensional topological phases, Phys. Rev. B 96, 045136 (2017), doi:10.1103/PhysRevB.96.045136. · doi:10.1103/PhysRevB.96.045136
[124] X. Chen, A. Dua, P.-S. Hsin, C.-M. Jian, W. Shirley and C. Xu, Loops in 4 + 1d topological phases, SciPost Phys. 15, 001 (2023), doi:10.21468/SciPostPhys.15.1.001. · Zbl 07903649 · doi:10.21468/SciPostPhys.15.1.001
[125] A. Dold, Lectures on algebraic topology, Springer, Berlin, Heidelberg, Germany, ISBN 9783540586609 (1995), doi:10.1007/978-3-642-67821-9. · Zbl 0872.55001 · doi:10.1007/978-3-642-67821-9
[126] G. ’t. Hooft, Magnetic monopoles in unified gauge theories, Nucl. Phys. B 79, 276 (1974), doi:10.1016/0550-3213(74)90486-6. · doi:10.1016/0550-3213(74)90486-6
[127] A. M. Polyakov, Particle spectrum in quantum field theory, J. Exp. Theor. Phys. Lett. 20, 194 (1974).
[128] P. Goddard, J. Nuyts and D. Olive, Gauge theories and magnetic charge, Nucl. Phys. B 125, 1 (1977), doi:10.1016/0550-3213(77)90221-8. · doi:10.1016/0550-3213(77)90221-8
[129] P.-S. Hsin and K. Slagle, Comments on foliated gauge theories and dualities in 3 + 1d, SciPost Phys. 11, 032 (2021), doi:10.21468/SciPostPhys.11.2.032. · doi:10.21468/SciPostPhys.11.2.032
[130] M. Bockstein, Universal systems of ∇-homology rings, Dokl. Akad. Nauk SSSR 37, 243 (1942). · Zbl 0060.40901
[131] M. B. Green and J. H. Schwarz, Anomaly cancellations in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett. B 149, 117 (1984), doi:10.1016/0370-2693(84)91565-X. · doi:10.1016/0370-2693(84)91565-X
[132] X. Chen and M. Hermele, Symmetry fractionalization and anomaly detec-tion in three-dimensional topological phases, Phys. Rev. B 94, 195120 (2016), doi:10.1103/PhysRevB.94.195120. · doi:10.1103/PhysRevB.94.195120
[133] A. Kubica, B. Yoshida and F. Pastawski, Unfolding the color code, New J. Phys. 17, 083026 (2015), doi:10.1088/1367-2630/17/8/083026. · Zbl 1454.81053 · doi:10.1088/1367-2630/17/8/083026
[134] M. Barkeshli and M. Cheng, Relative anomalies in (2 + 1)D symmetry enriched topological states, SciPost Phys. 8, 028 (2020), doi:10.21468/SciPostPhys.8.2.028. · doi:10.21468/SciPostPhys.8.2.028
[135] C. Wang and M. Levin, Braiding statistics of loop excitations in three dimensions, Phys. Rev. Lett. 113, 080403 (2014), doi:10.1103/PhysRevLett.113.080403. · doi:10.1103/PhysRevLett.113.080403
[136] B. Yoshida, Topological color code and symmetry-protected topological phases, Phys. Rev. B 91, 245131 (2015), doi:10.1103/PhysRevB.91.245131. · doi:10.1103/PhysRevB.91.245131
[137] J. Milnor, J. Stasheff and J. Stasheff, Characteristic classes, Princeton University Press, Princeton, USA, ISBN 9780691081229 (1974). · Zbl 0298.57008
[138] A. Kapustin and R. Thorngren, Fermionic SPT phases in higher dimensions and bosoniza-tion, J. High Energy Phys. 10, 080 (2017), doi:10.1007/JHEP10(2017)080. · Zbl 1383.83180 · doi:10.1007/JHEP10(2017)080
[139] Z.-C. Gu and X.-G. Wen, Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ models and a special group supercohomology theory, Phys. Rev. B 90, 115141 (2014), doi:10.1103/PhysRevB.90.115141. · doi:10.1103/PhysRevB.90.115141
[140] W. Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. Math. 90, 157 (1969), doi:10.2307/1970686. · Zbl 0198.28501 · doi:10.2307/1970686
[141] E. H. Brown, Generalizations of the Kervaire invariant, Ann. Math. 95, 368 (1972), doi:10.2307/1970804. · Zbl 0241.57014 · doi:10.2307/1970804
[142] A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys.-Usp. 44, 131 (2001), doi:10.1070/1063-7869/44/10S/S29. · doi:10.1070/1063-7869/44/10S/S29
[143] L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B 83, 075103 (2011), doi:10.1103/PhysRevB.83.075103. · doi:10.1103/PhysRevB.83.075103
[144] R. Kobayashi, Pin TQFT and Grassmann integral, J. High Energy Phys. 12, 014 (2019), doi:10.1007/JHEP12(2019)014. · doi:10.1007/JHEP12(2019)014
[145] J. Maldacena, N. Seiberg and G. Moore, D-brane charges in five-brane backgrounds, J. High Energy Phys. 10, 005 (2001), doi:10.1088/1126-6708/2001/10/005. · doi:10.1088/1126-6708/2001/10/005
[146] T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D 83, 084019 (2011), doi:10.1103/PhysRevD.83.084019. · doi:10.1103/PhysRevD.83.084019
[147] A. M. Medina-Mardones, An effective proof of the cartan formula: The even prime, J. Pure Appl. Algebra 224, 106444 (2020), doi:10.1016/j.jpaa.2020.106444. · Zbl 1472.55012 · doi:10.1016/j.jpaa.2020.106444
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.