×

Fusion categories and homotopy theory. (English) Zbl 1214.18007

Fusion categories over \(\mathbb{C}\) are natural generalisations of the representation category of a finite group. A fusion category is a rigid semi-simple linear monoidal category, having only finitely many isomorphism classes of simple objects and such that the endomorphisms of the unit object form the ground field. The classification of general fusion categories seems out of reach at the moment. This paper makes a step in the classification process, however, by adapting and extending methods from homotopy theory to the classification of \(G\)-extensions of a given fusion category.
The paper introduces a 3-groupoid, the Brauer-Picard groupoid, consisting of fusion categories, invertible bimodule categories between them, equivalences of such as 2-morphisms and with 3-morphisms isomorphisms of such equivalences. It then studies the classifying spaces of various related 2-groupoids, etc. The main results include an explicit description of extensions of fusion categories by a finite group \(G\), in terms of elements related to certain cohomology groups of \(G\).

MSC:

18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
55S35 Obstruction theory in algebraic topology

References:

[1] B. Bakalov and A. Kirillov, Jr., Lectures on tensor categories and modular functors . Univ. Lecture Ser. 21, Amer. Math. Soc., Providence, RI, 2001. · Zbl 0965.18002
[2] H. J. Baues, Combinatorial homotopy and 4 -dimensional complexes . de Gruyter Exp. Math. 2, Walter de Gruyter & Co., Berlin 1991. · Zbl 0716.55001
[3] A. M. Cegarra and A. R. Garzón, Obstructions to Clifford system extensions of algebras. Proc. Indian Acad. Sci. Math. Sci. 111 (2001), 151-161. · Zbl 0985.16030 · doi:10.1007/BF02829587
[4] A. M. Cegarra, A. R. Garzón, and J. A. Ortega, Graded extensions of monoidal categories. J. Algebra 241 (2001), 620-657. · Zbl 0988.18004 · doi:10.1006/jabr.2001.8769
[5] E. C. Dade, Group-graded rings and modules. Math. Z. 174 (1980), 241-262. · Zbl 0424.16001 · doi:10.1007/BF01161413
[6] P. Deligne, Catégories tannakiennes. In The Grothendieck Festschrift , Vol. II, Progr. Math. 87, Birkhäuser, Boston 1990, 111-195. · Zbl 0727.14010
[7] V. Drinfeld, S. Gelaki, D. Nikshych, and V. Ostrik, On braided fusion categories I. Selecta Math. ( N.S) 16 (2010), 1-119. · Zbl 1201.18005 · doi:10.1007/s00029-010-0017-z
[8] L. E. Dickson, Linear groups . B. G. Teubner, Leipzig 1901.
[9] S. Eilenberg and S. Mac Lane, Cohomology theory in abstract groups II: Group exten- sions with a non-Abelian kernel. Ann. of Math. (2) 48 (1947), 326-341. · Zbl 0029.34101 · doi:10.2307/1969174
[10] P. Etingof, On Vafa’s theorem for tensor categories. Math. Res. Lett. 9 (2002), 651-657. · Zbl 1035.18004 · doi:10.4310/MRL.2002.v9.n5.a8
[11] P. Etingof, D. Nikshych, and V. Ostrik, An analogue of Radford’s S 4 formula for finite tensor categories. Internat. Math. Res. Notices 2004 (2004), 2915-2933. · Zbl 1079.16024 · doi:10.1155/S1073792804141445
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.