×

Exploring 2-group global symmetries. (English) Zbl 1411.83116

Summary: We analyze four-dimensional quantum field theories with continuous 2-group global symmetries. At the level of their charges, such symmetries are identical to a product of continuous flavor or spacetime symmetries with a 1-form global symmetry U\((1)_B^{(1)}\), which arises from a conserved 2-form current \(J_B^{(2)}\). Rather, 2-group symmetries are characterized by deformed current algebras, with quantized structure constants, which allow two flavor currents or stress tensors to fuse into \(J_B^{(2)}\). This leads to unconventional Ward identities, which constrain the allowed patterns of spontaneous 2-group symmetry breaking and other aspects of the renormalization group flow. If \(J_B^{(2)}\) is coupled to a 2-form background gauge field \(B^{(2)}\), the 2-group current algebra modifies the behavior of \(B^{(2)}\) under background gauge transformations. Its transformation rule takes the same form as in the Green-Schwarz mechanism, but only involves the background gauge or gravity fields that couple to the other 2-group currents. This makes it possible to partially cancel reducible ’t Hooft anomalies using Green-Schwarz counterterms for the 2-group background gauge fields. The parts that cannot be cancelled are reinterpreted as mixed, global anomalies involving U\((1)_B^{(1)}\), which receive contributions from topological, as well as massless, degrees of freedom. Theories with 2-group symmetry are constructed by gauging an abelian flavor symmetry with suitable mixed ’t Hooft anomalies, which leads to many simple and explicit examples. Some of them have dynamical string excitations that carry U\((1)_B^{(1)}\) charge, and 2-group symmetry determines certain ’t Hooft anomalies on the world sheets of these strings. Finally, we point out that holographic theories with 2-group global symmetries have a bulk description in terms of dynamical gauge fields that participate in a conventional Green-Schwarz mechanism.

MSC:

83E30 String and superstring theories in gravitational theory
81T50 Anomalies in quantum field theory

References:

[1] D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP02 (2015) 172 [arXiv:1412.5148] [INSPIRE]. · Zbl 1388.83656 · doi:10.1007/JHEP02(2015)172
[2] C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact Terms, Unitarity and F-Maximization in Three-Dimensional Superconformal Theories, JHEP10 (2012) 053 [arXiv:1205.4142] [INSPIRE]. · Zbl 1397.83187 · doi:10.1007/JHEP10(2012)053
[3] C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Comments on Chern-Simons Contact Terms in Three Dimensions, JHEP09 (2012) 091 [arXiv:1206.5218] [INSPIRE]. · Zbl 1397.81190 · doi:10.1007/JHEP09(2012)091
[4] C. Córdova, T.T. Dumitrescu and K.A. Intriligator, Aspects of Higher Symmetries and Anomalies in Six-Dimensional Quantum Field Theories, to appear. · Zbl 1462.81128
[5] T.T. Dumitrescu and N. Seiberg, Supercurrents and Brane Currents in Diverse Dimensions, JHEP07 (2011) 095 [arXiv:1106.0031] [INSPIRE]. · Zbl 1298.81171 · doi:10.1007/JHEP07(2011)095
[6] M.B. Green and J.H. Schwarz, Anomaly Cancellation in Supersymmetric D = 10 Gauge Theory and Superstring Theory, Phys. Lett.149B (1984) 117 [INSPIRE]. · doi:10.1016/0370-2693(84)91565-X
[7] M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory Vol. 2: Loop Amplitudes, Anomalies and Phenomenology, Cambridge University Press (1987) [INSPIRE]. · Zbl 0619.53002
[8] J. Polchinski, String Theory Vol. 2: Superstring Theory and Beyond, Cambridge University Press (1998) [INSPIRE]. · Zbl 1006.81522
[9] P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum Configurations for Superstrings, Nucl. Phys.B 258 (1985) 46 [INSPIRE]. · doi:10.1016/0550-3213(85)90602-9
[10] A. Strominger, Superstrings with Torsion, Nucl. Phys.B 274 (1986) 253 [INSPIRE]. · doi:10.1016/0550-3213(86)90286-5
[11] A. Kapustin and R. Thorngren, Higher symmetry and gapped phases of gauge theories, arXiv:1309.4721 [INSPIRE]. · Zbl 1385.81034
[12] J.C. Baez and A.D. Lauda, Higher-dimensional algebra v: 2-groups, Theory Appl. Categ.12 (2004) 423 [math/0307200]. · Zbl 1056.18002
[13] J. Baez and U. Schreiber, Higher gauge theory: 2-connections on 2-bundles, hep-th/0412325 [INSPIRE]. · Zbl 1132.55007
[14] U. Schreiber and K. Waldorf, Connections on non-Abelian Gerbes and their Holonomy, Theory Appl. Categ.28 (2013) 476 [arXiv:0808.1923]. · Zbl 1279.53024
[15] R. Dijkgraaf and E. Witten, Topological Gauge Theories and Group Cohomology, Commun. Math. Phys.129 (1990) 393 [INSPIRE]. · Zbl 0703.58011 · doi:10.1007/BF02096988
[16] Y. Tachikawa, On gauging finite subgroups, arXiv:1712.09542 [INSPIRE]. · Zbl 1388.81707
[17] E. Sharpe, Notes on generalized global symmetries in QFT, Fortsch. Phys.63 (2015) 659 [arXiv:1508.04770] [INSPIRE]. · Zbl 1338.81269 · doi:10.1002/prop.201500048
[18] G. ’t Hooft, Naturalness, chiral symmetry and spontaneous chiral symmetry breaking, NATO Sci. Ser.B 59 (1980) 135 [INSPIRE].
[19] G. Mack, All unitary ray representations of the conformal group SU(2, 2) with positive energy, Commun. Math. Phys.55 (1977) 1 [INSPIRE]. · Zbl 0352.22012 · doi:10.1007/BF01613145
[20] S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys.2 (1998) 783 [hep-th/9712074] [INSPIRE]. · Zbl 1041.81534 · doi:10.4310/ATMP.1998.v2.n4.a4
[21] C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in Diverse Dimensions, arXiv:1612.00809 [INSPIRE]. · Zbl 1390.81500
[22] Y. Frishman, A. Schwimmer, T. Banks and S. Yankielowicz, The Axial Anomaly and the Bound State Spectrum in Confining Theories, Nucl. Phys.B 177 (1981) 157 [INSPIRE]. · doi:10.1016/0550-3213(81)90268-6
[23] S.R. Coleman and B. Grossman, ’t Hooft’s Consistency Condition as a Consequence of Analyticity and Unitarity, Nucl. Phys.B 203 (1982) 205 [INSPIRE].
[24] J.M. Maldacena, G.W. Moore and N. Seiberg, D-brane charges in five-brane backgrounds, JHEP10 (2001) 005 [hep-th/0108152] [INSPIRE]. · doi:10.1088/1126-6708/2001/10/005
[25] T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev.D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].
[26] A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and Duality, JHEP04 (2014) 001 [arXiv:1401.0740] [INSPIRE]. · doi:10.1007/JHEP04(2014)001
[27] S. Gukov and A. Kapustin, Topological Quantum Field Theory, Nonlocal Operators and Gapped Phases of Gauge Theories, arXiv:1307.4793 [INSPIRE].
[28] A. Kapustin and R. Thorngren, Topological Field Theory on a Lattice, Discrete Theta-Angles and Confinement, Adv. Theor. Math. Phys.18 (2014) 1233 [arXiv:1308.2926] [INSPIRE]. · Zbl 1308.81156 · doi:10.4310/ATMP.2014.v18.n5.a4
[29] A. Kapustin and R. Thorngren, Anomalies of discrete symmetries in various dimensions and group cohomology, arXiv:1404.3230 [INSPIRE]. · Zbl 1383.83180
[30] R. Thorngren and C. von Keyserlingk, Higher SPT’s and a generalization of anomaly in-flow, arXiv:1511.02929 [INSPIRE].
[31] L. Bhardwaj, D. Gaiotto and A. Kapustin, State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter, JHEP04 (2017) 096 [arXiv:1605.01640] [INSPIRE]. · Zbl 1378.81128 · doi:10.1007/JHEP04(2017)096
[32] F. Benini, C. Córdova and P.-S. Hsin, On 2-Group Global Symmetries and their Anomalies, arXiv:1803.09336 [INSPIRE]. · Zbl 1414.81223
[33] P. Etingof, D. Nikshych, V. Ostrik and E. Meir, Fusion categories and homotopy theory, arXiv:0909.3140. · Zbl 1214.18007
[34] M. Barkeshli, P. Bonderson, M. Cheng and Z. Wang, Symmetry, Defects and Gauging of Topological Phases, arXiv:1410.4540 [INSPIRE].
[35] M. Barkeshli and M. Cheng, Time-reversal and spatial-reflection symmetry localization anomalies in (2+1)-dimensional topological phases of matter, Phys. Rev.B 98 (2018) 115129 [arXiv:1706.09464] [INSPIRE]. · doi:10.1103/PhysRevB.98.115129
[36] N. Seiberg, New theories in six-dimensions and matrix description of M-theory on T5and T5/ℤ2, Phys. Lett.B 408 (1997) 98 [hep-th/9705221] [INSPIRE]. · doi:10.1016/S0370-2693(97)00805-8
[37] E. Witten, Small instantons in string theory, Nucl. Phys.B 460 (1996) 541 [hep-th/9511030] [INSPIRE]. · Zbl 0935.81052 · doi:10.1016/0550-3213(95)00625-7
[38] J.H. Schwarz, Anomaly-free supersymmetric models in six-dimensions, Phys. Lett.B 371 (1996) 223 [hep-th/9512053] [INSPIRE]. · doi:10.1016/0370-2693(95)01610-4
[39] K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, Anomaly polynomial of general 6d SCFTs, PTEP2014 (2014) 103B07 [arXiv:1408.5572] [INSPIRE]. · Zbl 1331.81266
[40] C. Cordova, T.T. Dumitrescu and X. Yin, Higher Derivative Terms, Toroidal Compactification and Weyl Anomalies in Six-Dimensional (2, 0) Theories, arXiv:1505.03850 [INSPIRE]. · Zbl 1427.81121
[41] C. Cordova, T.T. Dumitrescu and K. Intriligator, Anomalies, renormalization group flows and the a-theorem in six-dimensional (1, 0) theories, JHEP10 (2016) 080 [arXiv:1506.03807] [INSPIRE]. · Zbl 1390.81369 · doi:10.1007/JHEP10(2016)080
[42] L. Alvarez-Gaumé, An Introduction to Anomalies, NATO Sci. Ser.B 141 (1986) 93 [INSPIRE].
[43] S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications, Cambridge University Press (2013) [INSPIRE]. · Zbl 1264.81010
[44] J.A. Harvey, TASI 2003 lectures on anomalies, 2005, hep-th/0509097 [INSPIRE].
[45] J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett.37B (1971) 95 [INSPIRE]. · doi:10.1016/0370-2693(71)90582-X
[46] W.A. Bardeen and B. Zumino, Consistent and Covariant Anomalies in Gauge and Gravitational Theories, Nucl. Phys.B 244 (1984) 421 [INSPIRE]. · doi:10.1016/0550-3213(84)90322-5
[47] S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev.177 (1969) 2426 [INSPIRE]. · doi:10.1103/PhysRev.177.2426
[48] J.S. Bell and R. Jackiw, A PCAC puzzle: π0 → γγ in the σ model, Nuovo Cim.A 60 (1969) 47 [INSPIRE]. · doi:10.1007/BF02823296
[49] S.L. Adler and W.A. Bardeen, Absence of higher order corrections in the anomalous axial vector divergence equation, Phys. Rev.182 (1969) 1517 [INSPIRE]. · doi:10.1103/PhysRev.182.1517
[50] S.R. Coleman and B.R. Hill, No More Corrections to the Topological Mass Term in QED in Three-Dimensions, Phys. Lett.159B (1985) 184 [INSPIRE]. · doi:10.1016/0370-2693(85)90883-4
[51] L. Álvarez-Gaumé and P.H. Ginsparg, The Structure of Gauge and Gravitational Anomalies, Annals Phys.161 (1985) 423 [Erratum ibid.171 (1986) 233] [INSPIRE]. · Zbl 0579.58038
[52] L. Álvarez-Gaumé and E. Witten, Gravitational Anomalies, Nucl. Phys.B 234 (1984) 269 [INSPIRE]. · doi:10.1016/0550-3213(84)90066-X
[53] R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev.D 16 (1977) 1791 [INSPIRE].
[54] P.C. Argyres, M.R. Plesser, N. Seiberg and E. Witten, New N = 2 superconformal field theories in four-dimensions, Nucl. Phys.B 461 (1996) 71 [hep-th/9511154] [INSPIRE]. · Zbl 1004.81557 · doi:10.1016/0550-3213(95)00671-0
[55] C. Cordova, T.T. Dumitrescu and K. Intriligator, Deformations of Superconformal Theories, JHEP11 (2016) 135 [arXiv:1602.01217] [INSPIRE]. · Zbl 1390.81500 · doi:10.1007/JHEP11(2016)135
[56] W. Siegel, All Free Conformal Representations in All Dimensions, Int. J. Mod. Phys.A 4 (1989) 2015 [INSPIRE]. · doi:10.1142/S0217751X89000819
[57] S. Weinberg and E. Witten, Limits on Massless Particles, Phys. Lett.96B (1980) 59 [INSPIRE]. · doi:10.1016/0370-2693(80)90212-9
[58] C. Cordova and K. Diab, Universal Bounds on Operator Dimensions from the Average Null Energy Condition, JHEP02 (2018) 131 [arXiv:1712.01089] [INSPIRE]. · doi:10.1007/JHEP02(2018)131
[59] C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Spheres, Charges, Instantons and Bootstrap: A Five-Dimensional Odyssey, JHEP03 (2018) 123 [arXiv:1710.08418] [INSPIRE]. · Zbl 1388.81740 · doi:10.1007/JHEP03(2018)123
[60] E. Witten, An SU(2) Anomaly, Phys. Lett.B 117 (1982) 324 [INSPIRE]. · doi:10.1016/0370-2693(82)90728-6
[61] I. García-Etxebarria, H. Hayashi, K. Ohmori, Y. Tachikawa and K. Yonekura, 8d gauge anomalies and the topological Green-Schwarz mechanism, JHEP11 (2017) 177 [arXiv:1710.04218] [INSPIRE]. · Zbl 1383.83137
[62] H. Georgi and S.L. Glashow, Unified weak and electromagnetic interactions without neutral currents, Phys. Rev. Lett.28 (1972) 1494 [INSPIRE]. · doi:10.1103/PhysRevLett.28.1494
[63] Wikipedia, Euler’s sum of powers conjecture, (2017) [https://en.wikipedia.org/wiki/Euler’s sum of powers conjecture <RefTarget Address=“https://en.wikipedia.org/wiki/Euler”s_sum_of_powers_conjecture“ TargetType=”URL”/> ].
[64] N. Seiberg, Modifying the Sum Over Topological Sectors and Constraints on Supergravity, JHEP07 (2010) 070 [arXiv:1005.0002] [INSPIRE]. · Zbl 1290.83025 · doi:10.1007/JHEP07(2010)070
[65] A. Kapustin and M.J. Strassler, On mirror symmetry in three-dimensional Abelian gauge theories, JHEP04 (1999) 021 [hep-th/9902033] [INSPIRE]. · Zbl 0953.81097 · doi:10.1088/1126-6708/1999/04/021
[66] E. Witten, SL(2, Z) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [INSPIRE]. · Zbl 1160.81457
[67] N. Seiberg, T. Senthil, C. Wang and E. Witten, A Duality Web in 2 + 1 Dimensions and Condensed Matter Physics, Annals Phys.374 (2016) 395 [arXiv:1606.01989] [INSPIRE]. · Zbl 1377.81262 · doi:10.1016/j.aop.2016.08.007
[68] J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE]. · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[69] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE]. · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[70] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE]. · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[71] E. Witten, Symmetry and Emergence, Nature Phys.14 (2018) 116 [arXiv:1710.01791] [INSPIRE]. · doi:10.1038/nphys4348
[72] D. Harlow, TASI Lectures on the Emergence of Bulk Physics in AdS/CFT, PoS(TASI2017) 002 (2018) [arXiv:1802.01040] [INSPIRE].
[73] D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, arXiv:1810.05338 [INSPIRE]. · Zbl 1472.81208
[74] S. Grozdanov and N. Poovuttikul, Generalised global symmetries and magnetohydrodynamic waves in a strongly interacting holographic plasma, arXiv:1707.04182 [INSPIRE]. · Zbl 1390.83112
[75] D.M. Hofman and N. Iqbal, Generalized global symmetries and holography, SciPost Phys.4 (2018) 005 [arXiv:1707.08577] [INSPIRE]. · doi:10.21468/SciPostPhys.4.1.005
[76] E. Witten, Superconducting Strings, Nucl. Phys.B 249 (1985) 557 [INSPIRE]. · doi:10.1016/0550-3213(85)90022-7
[77] R. Jackiw and P. Rossi, Zero Modes of the Vortex-Fermion System, Nucl. Phys.B 190 (1981) 681 [INSPIRE]. · doi:10.1016/0550-3213(81)90044-4
[78] E.J. Weinberg, Index Calculations for the Fermion-Vortex System, Phys. Rev.D 24 (1981) 2669 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.