×

On the endpoint regularity in Onsager’s conjecture. (English) Zbl 07904880

Summary: Onsager’s conjecture states that the conservation of energy may fail for three-dimensional incompressible Euler flows with Hölder regularity below \(\frac{1}{3}\). This conjecture was recently solved by the author, yet the endpoint case remains an interesting open question with further connections to turbulence theory. In this work, we construct energy nonconserving solutions to the three-dimensional incompressible Euler equations with space-time Hölder regularity converging to the critical exponent at small spatial scales and containing the entire range of exponents \([0, \frac{1}{3})\).
Our construction improves the author’s previous result towards the endpoint case. To obtain this improvement, we introduce a new method for optimizing the regularity that can be achieved by a convex integration scheme. A crucial point is to avoid loss of powers in frequency in the estimates of the iteration. This goal is achieved using localization techniques of P. Isett and S.-J. Oh [Arch. Ration. Mech. Anal. 221, No. 2, 725–804 (2016; Zbl 1338.35344)] to modify the convex integration scheme.
We also prove results on general solutions at the critical regularity that may not conserve energy. These include a theorem on intermittency stating roughly that energy dissipating solutions cannot have absolute structure functions satisfying the Kolmogorov-Obukhov scaling for any \(p > 3\) if their singular supports have space-time Lebesgue measure zero.

MSC:

35Q31 Euler equations
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
76F02 Fundamentals of turbulence
35D30 Weak solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35B33 Critical exponents in context of PDEs
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

Citations:

Zbl 1338.35344

References:

[1] 10.3934/dcdss.2010.3.185 · Zbl 1191.76057 · doi:10.3934/dcdss.2010.3.185
[2] 10.1007/s00205-017-1189-x · Zbl 1390.35241 · doi:10.1007/s00205-017-1189-x
[3] 10.1007/s00220-019-03493-6 · Zbl 1420.35203 · doi:10.1007/s00220-019-03493-6
[4] 10.4007/annals.2015.182.1.3 · Zbl 1330.35303 · doi:10.4007/annals.2015.182.1.3
[5] 10.1002/cpa.21586 · Zbl 1351.35109 · doi:10.1002/cpa.21586
[6] 10.1002/cpa.21781 · Zbl 1480.35317 · doi:10.1002/cpa.21781
[7] 10.1002/cpa.21851 · Zbl 1427.35200 · doi:10.1002/cpa.21851
[8] 10.1090/S0002-9939-09-10141-7 · Zbl 1423.76085 · doi:10.1090/S0002-9939-09-10141-7
[9] 10.1137/120876447 · Zbl 1295.76010 · doi:10.1137/120876447
[10] 10.1088/0951-7715/21/6/005 · Zbl 1138.76020 · doi:10.1088/0951-7715/21/6/005
[11] 10.1007/BF02099744 · Zbl 0818.35085 · doi:10.1007/BF02099744
[12] 10.1007/978-3-642-25361-4_5 · doi:10.1007/978-3-642-25361-4\_5
[13] 10.1007/s00205-017-1081-8 · Zbl 1372.35221 · doi:10.1007/s00205-017-1081-8
[14] 10.4007/annals.2009.170.1417 · Zbl 1350.35146 · doi:10.4007/annals.2009.170.1417
[15] 10.1007/s00222-012-0429-9 · Zbl 1280.35103 · doi:10.1007/s00222-012-0429-9
[16] 10.4171/RMI/1019 · Zbl 1421.53045 · doi:10.4171/RMI/1019
[17] 10.1090/proc/16104 · Zbl 1501.35292 · doi:10.1090/proc/16104
[18] 10.1137/18M1178864 · Zbl 1401.76068 · doi:10.1137/18M1178864
[19] 10.1088/0951-7715/13/1/312 · Zbl 1009.35062 · doi:10.1088/0951-7715/13/1/312
[20] 10.1016/0167-2789(94)90117-1 · Zbl 0817.76011 · doi:10.1016/0167-2789(94)90117-1
[21] 10.1103/RevModPhys.78.87 · Zbl 1205.01032 · doi:10.1103/RevModPhys.78.87
[22] 10.1098/rspa.1991.0082 · Zbl 0727.76064 · doi:10.1098/rspa.1991.0082
[23] 10.1515/9781400885428 · Zbl 1367.35001 · doi:10.1515/9781400885428
[24] 10.1515/9781400885428 · Zbl 1367.35001 · doi:10.1515/9781400885428
[25] 10.4007/annals.2018.188.3.4 · Zbl 1416.35194 · doi:10.4007/annals.2018.188.3.4
[26] 10.1090/tran/8899 · Zbl 1522.35388 · doi:10.1090/tran/8899
[27] 10.1090/tran/6549 · Zbl 1335.58018 · doi:10.1090/tran/6549
[28] 10.1007/s00205-016-0973-3 · Zbl 1338.35344 · doi:10.1007/s00205-016-0973-3
[29] 10.1016/j.anihpc.2016.05.002 · Zbl 1383.35147 · doi:10.1016/j.anihpc.2016.05.002
[30] 10.1007/s40818-015-0002-0 · Zbl 1395.35061 · doi:10.1007/s40818-015-0002-0
[31] ; Kolmogorov, A. N., The local structure of turbulence in an incompressible viscous fluid, C. R. (Doklady) Acad. Sci. URSS (N.S.), 30, 301, 1941 · JFM 67.0850.06
[32] 10.2140/apde.2017.10.695 · Zbl 1370.35151 · doi:10.2140/apde.2017.10.695
[33] 10.1080/03605302.2015.1045073 · Zbl 1329.35237 · doi:10.1080/03605302.2015.1045073
[34] 10.1103/PhysRevA.41.894 · doi:10.1103/PhysRevA.41.894
[35] 10.1007/s00222-023-01185-6 · Zbl 1530.35200 · doi:10.1007/s00222-023-01185-6
[36] 10.1007/BF02780991 · doi:10.1007/BF02780991
[37] 10.1090/tran/7022 · Zbl 1386.35333 · doi:10.1090/tran/7022
[38] 10.1007/s10114-003-0264-4 · Zbl 1026.31003 · doi:10.1007/s10114-003-0264-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.