×

Non-uniqueness and \(h\)-principle for Hölder-continuous weak solutions of the Euler equations. (English) Zbl 1372.35221

The incompressible Euler equations \(v_t+\operatorname{div}(v \otimes v) + \nabla p =0\), \(\operatorname{div}v=0\) are considered in the periodic setting \(\mathbb T^3= \mathbb R^3 / \mathbb Z^3\). A given initial data satisfies the Hölder condition with the Hölder exponent \(\theta \in (0,1)\). The authors prove that for \(\theta <1/5 - \varepsilon\) with sufficiently small \(\varepsilon>0\) there exist infinitely many admissible Hölder \(1/5 - \varepsilon\) weak solutions. A new set of stationary flows is introduced in order to show that a general form of the \(h\)-principle applies to Hölder-continuous weak solutions of the Euler equations.

MSC:

35Q31 Euler equations
35D30 Weak solutions to PDEs
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids

References:

[1] Bardos C, Titi E.S.: Loss of smoothness and energy conserving rough weak solutions for the 3d Euler equations. Discrete Contin. Dyn. Syst. Ser. S 3 2, 185-197 (2010) · Zbl 1191.76057
[2] Brenier, Y., De Lellis, C., Székelyhidi Jr, L.: Weak-strong uniqueness for measure-valued solutions. Comm. Math. Phys. 2011 · Zbl 1219.35182
[3] Buckmaster T., De Lellis C., Isett P., Székelyhidi L. Jr: Anomalous dissipation for 1/5-Hölder Euler flows. Ann. Math. 2(182), 1-46 (2015) · Zbl 1330.35303
[4] Choffrut A.: h-Principles for the incompressible Euler equations. Arch. Rational Mech. Anal. 210 1, 133-163 (2013) · Zbl 1291.35200 · doi:10.1007/s00205-013-0639-3
[5] Daneri, S.: Cauchy problem for dissipative Hölder solutions to the incompressible Euler equations. Commun. Math. Phys., 2014 · Zbl 1298.35140
[6] De Lellis C.: Székelyhidi L., On h-principle and Onsager’s conjecture. Eur. Math. Soc. Newsl. 95, 19-24 (2015) · Zbl 1335.35189
[7] De Lellis C., Székelyhidi L. Jr: The Euler equations as a differential inclusion. Ann. Math. (2) 170 3, 1417-1436 (2009) · Zbl 1350.35146 · doi:10.4007/annals.2009.170.1417
[8] De Lellis C., Székelyhidi L. Jr: On Admissibility Criteria for Weak Solutions of the Euler Equations. Arch. Rational Mech. Anal. 195 1, 225-260 (2010) · Zbl 1192.35138 · doi:10.1007/s00205-008-0201-x
[9] De Lellis C., Székelyhidi L. Jr: The h-principle and the equations of fluid dynamics. Bull. Amer. Math. Soc. (N.S.) 49 3, 347-375 (2012) · Zbl 1254.35180 · doi:10.1090/S0273-0979-2012-01376-9
[10] De Lellis C., Székelyhidi L. Jr: Dissipative continuous Euler flows. Invent. Math. 193 2, 377-407 (2013) · Zbl 1280.35103 · doi:10.1007/s00222-012-0429-9
[11] De Lellis C., Székelyhidi L. Jr: Dissipative Euler flows and Onsager’s conjecture. J. Eur. Math. Soc. (JEMS) 16 7, 1467-1505 (2014) · Zbl 1307.35205 · doi:10.4171/JEMS/466
[12] Duchon J., Robert R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity 13 1, 249-255 (2000) · Zbl 1009.35062 · doi:10.1088/0951-7715/13/1/312
[13] Isett, P.: Hölder continuous Euler flows with compact support in time. PhD thesis, Princeton University, 2013 · Zbl 1367.35001
[14] Isett P., Oh S.-J.: On nonperiodic Euler flows with Hölder regularity. Arch. Rational Mech. Anal. 221 2, 725-804 (2016) · Zbl 1338.35344 · doi:10.1007/s00205-016-0973-3
[15] Lax, P. D.: Deterministic Turbulence. In Applied and Industrial Mathematics. Springer, Dordrecht, 1990, pp. 57-58 · Zbl 1307.35205
[16] Lions, P.-L.: Mathematical Topics in Fluid Mechanics: Volume 1: Incompressible Models. Oxford University Press, June 1996 · Zbl 0058.37703
[17] Nash J.: \[{C^1}\] C1 isometric imbeddings. Ann. Math. (2) 60 3, 383-396 (1954) · Zbl 0058.37703 · doi:10.2307/1969840
[18] Scheffer V.: An inviscid flow with compact support in space-time. J. Geom. Anal. 3 4, 343-401 (1993) · Zbl 0836.76017 · doi:10.1007/BF02921318
[19] Shnirelman A. I.: On the nonuniqueness of weak solution of the Euler equation. Commun. Pure Appl. Math. 50 12, 1261-1286 (1997) · Zbl 0909.35109 · doi:10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.0.CO;2-6
[20] Székelyhidi Jr, L., From Isometric Embeddings to Turbulence. In HCDTE Lecture Notes. Part II. Nonlinear Hyperbolic PDEs, Dispersive and Transport Equations. American Institute of Mathematical Sciences, 2014, pp. 1-66 · Zbl 1191.76057
[21] Székelyhidi Jr, L.: The h-principle and turbulence. ICM 2014 Proceedings Volume 2014 · Zbl 1373.35085
[22] Székelyhidi Jr, L.: Weak solutions of the Euler equations: non-uniqueness and dissipation. Journées Équations aux derivées partielles 10 (Jan. 2016), 1-35 2016 · Zbl 1256.35072
[23] Székelyhidi L. Jr, Wiedemann E.: Young measures generated by ideal incompressible fluid flows. Arch. Rational Mech. Anal. 206 1, 333-366 (2012) · Zbl 1256.35072 · doi:10.1007/s00205-012-0540-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.