×

Onsager’s conjecture and anomalous dissipation on domains with boundary. (English) Zbl 1401.76068

Summary: We give a localized regularity condition for energy conservation of weak solutions of the Euler equations on a domain \(\Omega\subset \mathbb{R}^d\), \(d\geq 2\), with boundary. In the bulk of fluid, we assume Besov regularity of the velocity \(u\in L^3(0,T;B_{3}^{1/3, c_0})\). On an arbitrary thin neighborhood of the boundary, we assume boundedness of velocity and pressure and, at the boundary, we assume continuity of wall-normal velocity. We also prove two theorems which establish that the global viscous dissipation vanishes in the inviscid limit for Leray-Hopf solutions \(u^\nu\) of the Navier-Stokes equations under the similar assumptions, but holding uniformly in a thin boundary layer of width \(O(\nu^{\min\{1,\frac{1}{2(1-\sigma)}\}})\) when \(u\in L^3(0, T; B_3^{\sigma, c_0})\) in the interior for any \(\sigma\in [1/3,1]\). The first theorem assumes continuity of the velocity in the boundary layer, whereas the second assumes a condition on the vanishing of energy dissipation within the layer. In both cases, strong \(L^3_tL^3_{x,loc}\) convergence holds to a weak solution of the Euler equations. Finally, if a strong Euler solution exists in the background, we show that equicontinuity at the boundary within a \(O(\nu)\) strip alone suffices to conclude the absence of anomalous dissipation.

MSC:

76F02 Fundamentals of turbulence
35Q30 Navier-Stokes equations
35Q31 Euler equations
35Q35 PDEs in connection with fluid mechanics

References:

[1] L. Onsager, Statistical hydrodynamics, Il Nuovo Cimento. Suppl., 6 (1949), pp. 279–287.
[2] G. L. Eyink, Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer, Phys. D, 78 (1994), pp. 222–240. · Zbl 0817.76011
[3] P. Constantin, W. E, and E. Titi, Onsager’s conjecture on the energy conservation for solutions of Euler’s equation, Comm. Math. Phys., 165 (1994), pp. 207–209. · Zbl 0818.35085
[4] J. Duchon and R. Robert, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinearity, 13 (2000), pp. 249–255. · Zbl 1009.35062
[5] A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy, Energy conservation and Onsager’s conjecture for the Euler equations, Nonlinearity, 21 (2008), pp. 1233–1252. · Zbl 1138.76020
[6] A. Cheskidov, M. C. Lopes Filho, H. J. Nussenzveig Lopes, and R. Shvydkoy, Energy conservation in two-dimensional incompressible ideal fluids, Comm. Math. Phys., 348 (2016), pp. 129–143. · Zbl 1351.35112
[7] R. Shvydkoy, Lectures on the Onsager conjecture, Discreate Contin. Dyn. Syst. Ser. S, 3 (2010), pp. 473–496. · Zbl 1210.76086
[8] T. D. Drivas and G. L. Eyink, An Onsager Singularity Theorem for Leray Solutions of Incompressible Navier-Stokes, preprint, , 2017. · Zbl 1315.35163
[9] T. D. Drivas and G. L. Eyink, An Onsager singularity theorem for turbulent solutions of compressible Euler equations, Comm. Math. Phys. 359 (2017), pp. 1–31.
[10] C. De Lellis and L. Székelyhidi, Jr., The Euler equations as a differential inclusion, Ann. of Math. (2) 170 (2009), pp. 1417–1436. · Zbl 1350.35146
[11] C. De Lellis and L. Székelyhidi, Jr., On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195 (2010), pp. 225–260. · Zbl 1192.35138
[12] C. De Lellis and L. Székelyhidi, Jr., The \(h\)-principle and the equations of fluid dynamics, Bull. Amer. Math. Soc. (N.S.), 49 (2012), pp. 347–375. · Zbl 1254.35180
[13] P. Isett, A proof of Onsager’s conjecture, Ann. Math., to appear. · Zbl 1335.58018
[14] T. Buckmaster, C. De Lellis, L. Székelyhidi, Jr., and V. Vicol, Onsager’s conjecture for admissible weak solutions, Comm. Pure Appl. Math., to appear. · Zbl 1480.35317
[15] G. L. Eyink, Review of the Onsager “Ideal Turbulence” Theory, preprint, , 2018.
[16] V. Borue and S. A. Orszag, Self-similar decay of three-dimensional homogeneous turbulence with hyperviscosity, Phys. Rev. E, 51 (1995), pp. R856–R859.
[17] H. Touil, J.-P. Bertoglio, and L. Shao, The decay of turbulence in a bounded domain, J. Turbul., 3 (2002), N49. · Zbl 1082.76566
[18] K. R. Sreenivasan, An update on the energy dissipation rate in isotropic turbulence, Phys. Fluids, 10 (1998), pp. 528–529. · Zbl 1185.76674
[19] Y. Kaneda, T. Ishihara, M. Yokokawa, K. Itakura, and A. Uno, Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box, Phys. Fluids, 15 (2003), pp. L21–L24. · Zbl 1185.76191
[20] K. R. Sreenivasan, On the scaling of the turbulence energy dissipation rate, Phys. Fluids, 27 (1984), pp. 1048–1051.
[21] B. R. Pearson, P. A. Krogstad, and W. van de Water, Measurements of the turbulent energy dissipation rate, Phys. Fluids, 14 (2002), pp. 1288–1290.
[22] G. L. Eyink, Besov spaces and the multifractal hypothesis, J. Stat. Phys., 78 (1995), pp. 353–375. · Zbl 1080.76537
[23] J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63 (1934), pp. 193–248. · JFM 60.0726.05
[24] E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Erhard Math. Nachr., (1950), pp. 213–231. · Zbl 0042.10604
[25] J. A. Mauro, On the regularity properties of the pressure field associated to a Hopf weak solution to the Navier-Stokes equations, Pliska Stud. Math. 23 (2014), pp. 95–118. · Zbl 1363.76017
[26] Y. Giga and H. Sohr, Abstract \(L^p\) estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal., 102 (1991), pp. 72–94. · Zbl 0739.35067
[27] H. Sohr and W. von Wahl, On the regularity of the pressure of weak solutions of Navier-Stokes equations, Arch. Math. (Basel), 46 (1986), pp. 428–439. · Zbl 0574.35070
[28] C. Bardos and E. Titi, Onsager’s conjecture for the incompressible Euler equations in bounded domains, Arch. Ration. Mech. Anal., 228 (2018), pp. 197–207. · Zbl 1390.35241
[29] C. Bardos, E. Titi, and E. Wiedemann, Onsager’s Conjecture with Physical Boundaries and an Application to the Viscosity Limit, preprint, , 2018.
[30] G. Lewis and H. Swinney, Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette-Taylor flow, Phys. Rev. E, 59 (1999), pp. 5457–5467.
[31] L. Escauriaza and S. Montaner, Some remarks on the \(L^p\) regularity of second derivatives of solutions to non-divergence elliptic equations and the Dini condition, Atti. Acad. Naz. Lincei Rend. Lincei. Mat. Appl., 28 (2017), pp. 49–63. · Zbl 1367.35052
[32] O. Cadot, Y. Couder, A. Daerr, S. Douady, and A. Tsinober, Energy injection in closed turbulent flows: Stirring through boundary layers versus inertial stirring, Phys. Rev. E, 56 (1997), 427.
[33] C. Fureby and G. Tabor, Mathematical and physical constraints on large-eddy simulations, Theoret. Comput. Fluid Dyn., 9 (1997), pp. 85–102. · Zbl 0912.76073
[34] S. Ghosal, Mathematical and physical constraints on large-eddy simulation of turbulence, AIAA J., 37 (1999), pp. 425–433.
[35] R. van der Bos and B. Geurts, Commutator errors in the filtering approach to large-eddy simulation, Phys. Fluids, 17 (2005), 035108. · Zbl 1187.76536
[36] B. Geurts and D. Holm, Commutator errors in large-eddy simulation, J. Phys. A, 39 (2006), 2213 · Zbl 1198.76049
[37] S. Chen, Z. Xia, S. Pei, J. Wang, Y. Yang, Z. Xiao, and Y. Shi, Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows, J. Fluid Mech., 703 (2012), pp. 1–28. · Zbl 1248.76093
[38] T. Kato, Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary, in Seminar on Nonlinear Partial Differential Equations, Springer, New York, 1984, 85–98. · Zbl 0559.35067
[39] L. Prandtl, Zur turbulenten Strömung in Röhren und längsPlatten, Ergeb. Aerodyn. Versuchsanstalt Göttingen, 4 (1932), pp. 18–29. · Zbl 0005.03601
[40] T. von Kármán, Mechanische Ähnlichkeit und Turbulenz, Nachr. Akad. Wiss. Göttingen II. Math. Phys. KL., 58 (1930), pp. 58–76. · JFM 56.1260.03
[41] G. L. Eyink, Turbulence Theory, course notes, , 2015.
[42] B. J. Mckeon and K. R. Sreenivasan, Introduction: Scaling and structure in high Reynolds number wall-bounded flows, Philos. Trans. Roy. Soc. A, 365 (2007), pp. 635–646 · Zbl 1152.76378
[43] R. L. Panton, Composite asymptotic expansions and scaling wall turbulence, Philos. Trans. Roy. Soc. A, 365 (2007), pp. 733–754. · Zbl 1152.76415
[44] R. Nguyen van yen, M. Farge, and K. Schneider, Energy dissipating structures produced by walls in two-dimensional flows at vanishing viscosity, Phys. Rev. Lett., 106 (2011), 184502.
[45] P. Constantin and V. Vicol, Remarks on high Reynolds numbers hydrodynamics and the inviscid limit, J. Nonlinear Sci., 28 (2018), pp. 711–724. · Zbl 1384.35057
[46] K. R. Sreenivasan, S. I. Vainshtein, R. Bhiladvala, I. San Gil, S. Chen, and N. Cao, Asymmetry of velocity increments in fully developed turbulence and the scaling of low-order moments, Phys. Rev. Letts., 77, (1996), pp. 1488–1491.
[47] F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia, High-order velocity structure functions in turbulent shear flows, J. Fluid Mech., 140 (1984), pp. 63–89.
[48] P. Constantin, T. Elgindi, M. Ignatova, and V. Vicol, Remarks on the inviscid limit for the Navier–Stokes equations for uniformly bounded velocity fields, SIAM J. Math. Anal., 49 (2017), pp. 1932–1946. · Zbl 1373.35239
[49] E. Wiedemann, Weak-strong uniqueness in fluid dynamics, preprint, , 2017.
[50] C. Bardos, L. Székelyhidi, Jr., and E. Wiedemann, Non-uniqueness for the Euler equations: The effect of the boundary, Russian Math. Surveys, 69 (2014), pp. 189–207. · Zbl 1301.35097
[51] L. C. Evans, Partial Differential Equations, Grad. Stud. Math., 19, Amer. Math. Soc. Providence, RI, 2010. · Zbl 1194.35001
[52] J. Duistermaat and J. Kolk, Multidimensional real analysis I: Differentiation, Cambridge University Press, Cambridge, UK, 2004. · Zbl 1077.26001
[53] P. Isett, Nonuniqueness and Existence of Continuous, Globally Dissipative Euler Flows, preprint, , 2017. · Zbl 1367.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.