×

Free \(\mathbb{Q}\)-groups are residually torsion-free nilpotent. (Les \(Q\)-groupes libres sont résiduellement nilpotents sans torsion.) (English. French summary) Zbl 07904674

A group \(G\) is called a \(\mathbb{Q}\)-group if, for any \(n\in \mathbb{N}\) and \(g \in G\) there, exists exactly one \(h \in G\) satisfying \(h^{n}=g\). These groups were introduced by G. Baumslag in [Acta Math. 104, 217–303 (1960; Zbl 0178.34901)], he observed that \(\mathbb{Q}\)-groups may be viewed as universal algebras, and as such they constitute a variety. In particular the free algebras (in that variety) are called free \(\mathbb{Q}\)-groups.
The main result in the article under review is Theorem 1.1: A free \(\mathbb{Q}\)-group is residually torsion-free nilpotent. This affirmatively answers a question posed by G. Baumslag in [Commun. Pure Appl. Math. 18, 25–30 (1965; Zbl 0136.01204)].
The key point in the proof of Theorem 1.1 is to show that any finitely generated subgroup of a free \(\mathbb{Q}\)-group can be embedded into a finitely generated free pro-\(p\) group for some prime \(p\). Theorem 1.1 is actually an application of the more technical Theorem 5.1, the proof of which uses the theory of mod-\(p\; L^{2}\)-Betti numbers.
Another interesting result of this paper is given by Theorem 1.4: The \(\mathbb{Q}\)-completion of a limit group is residually torsion-free nilpotent.

MSC:

20E06 Free products of groups, free products with amalgamation, Higman-Neumann-Neumann extensions, and generalizations
20E18 Limits, profinite groups
20E26 Residual properties and generalizations; residually finite groups

References:

[1] I. Agol, The virtual Haken conjecture, Doc. Math. 18 (2013), 1045-1087. · Zbl 1286.57019
[2] J. Barlev, T. Gelander, Compactifications and algebraic completions of limit groups, J. Anal. Math. 112 (2010), 261-287. · Zbl 1235.22003
[3] Y. Barnea, M. Larsen, A non-abelian free pro-p group is not linear over a local field, J. Algebra 214 (1999), 338-341. · Zbl 0923.20018
[4] G. Baumslag, Some aspects of groups with unique roots, Acta Math. 104 (1960), 217-303. · Zbl 0178.34901
[5] G. Baumslag, On free D-groups, Comm. Pure Appl. Math. 18 (1965), 25-30. · Zbl 0136.01204
[6] G. Baumslag, Groups with the same lower central sequence as a relatively free group. I. The groups, Trans. Amer. Math. Soc. 129 (1967), 308-321. · Zbl 0153.35002
[7] G. Baumslag, On the residual nilpotence of certain one-relator groups, Comm. Pure Appl. Math. 21 (1968), 491-506. · Zbl 0186.32101
[8] G. Baumslag, Groups with the same lower central sequence as a relatively free group. II. Properties, Trans. Amer. Math. Soc. 142 (1969), 507-538. · Zbl 0188.06002
[9] G. Baumslag, Some reflections on proving groups residually torsion-free nilpotent. I, Illinois J. Math. 54 (2010), 315-325. · Zbl 1250.20021
[10] G. Baumslag, A. G. Myasnikov, V. Shpilrain, Open problems in combinatorial group theory. Second edition, in Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), Contemp. Math. 296, Amer. Math. Soc., 2002, 1-38. · Zbl 1065.20042
[11] D. E.-C. Ben-Ezra, E. Zelmanov, On pro-2 identities of 2 2 linear groups, Trans. Amer. Math. Soc. 374 (2021), 4093-4128. · Zbl 1478.20022
[12] M. Bestvina, M. Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992), 85-101. · Zbl 0724.57029
[13] E. Breuillard, T. Gelander, J. Souto, P. Storm, Dense embeddings of surface groups, Geom. Topol. 10 (2006), 1373-1389. · Zbl 1132.22011
[14] M. R. Bridson, A. W. Reid, Nilpotent completions of groups, Grothendieck pairs, and four problems of Baumslag, Int. Math. Res. Not. 2015 (2015), 2111-2140. · Zbl 1334.20030
[15] C. Champetier, V. Guirardel, Limit groups as limits of free groups, Israel J. Math. 146 (2005), 1-75. · Zbl 1103.20026
[16] B. Chandler, The representation of a generalized free product in an associative ring, Comm. Pure Appl. Math. 21 (1968), 271-288. · Zbl 0167.02201
[17] P. M. Cohn, Localization in semifirs, Bull. London Math. Soc. 6 (1974), 13-20. · Zbl 0274.16001
[18] P. M. Cohn, Free rings and their relations, second ed., London Mathematical Society Monographs 19, Academic Press, London, 1985. · Zbl 0659.16001
[19] P. M. Cohn, Skew fields, Encyclopedia of Mathematics and its Applications 57, Cambridge Univ. Press, 1995. · Zbl 0840.16001
[20] W. Dicks, D. Herbera, J. Sánchez, On a theorem of Ian Hughes about division rings of fractions, Comm. Algebra 32 (2004), 1127-1149. · Zbl 1084.16018
[21] M. Ershov, W. Lück, The first L 2 -Betti number and approximation in arbitrary characteristic, Doc. Math. 19 (2014), 313-332. · Zbl 1355.20031
[22] A. M. Gaglione, A. G. Myasnikov, V. N. Remeslennikov, D. Spellman, Formal power series representations of free exponential groups, Comm. Algebra 25 (1997), 631-648. · Zbl 0871.20020
[23] J. Gräter, Free division rings of fractions of crossed products of groups with Conra-dian left-orders, Forum Math. 32 (2020), 739-772. · Zbl 1484.16030
[24] F. Haglund, D. T. Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008), 1551-1620. · Zbl 1155.53025
[25] H. Hahn, Über die nichtarchimedischen Grössensysteme, Sitzungsb. der K. Akad. der Wiss. 116 (1907), 601-655. · JFM 38.0501.01
[26] T. Hsu, D. T. Wise, Cubulating malnormal amalgams, Invent. math. 199 (2015), 293-331. · Zbl 1320.20039
[27] I. Hughes, Division rings of fractions for group rings, Comm. Pure Appl. Math. 23 (1970), 181-188. · Zbl 0214.05401
[28] A. Jaikin-Zapirain, On linear just infinite pro-p groups, J. Algebra 255 (2002), 392-404. · Zbl 1018.20022
[29] A. Jaikin-Zapirain, Approximation by subgroups of finite index and the Hanna Neumann conjecture, Duke Math. J. 166 (2017), 1955-1987. · Zbl 1375.20035
[30] A. Jaikin-Zapirain, The base change in the Atiyah and the Lück approximation conjectures, Geom. Funct. Anal. 29 (2019), 464-538. · Zbl 1453.20007
[31] A. Jaikin-Zapirain, L 2 -Betti numbers and their analogues in positive characteristic, in Groups St Andrews 2017 in Birmingham, London Math. Soc. Lecture Note Ser. 455, Cambridge Univ. Press, 2019, 346-405. · Zbl 1514.20154
[32] A. Jaikin-Zapirain, An explicit construction of the universal division ring of frac-tions of Ehhx 1 ; : : : ; x d ii, J. Comb. Algebra 4 (2020), 369-395. · Zbl 1496.16019
[33] A. Jaikin-Zapirain, The universality of Hughes-free division rings, Selecta Math. (N.S.) 27 (2021), Paper No. 74, 33. · Zbl 1512.16023
[34] A. Jaikin-Zapirain, D. López-Álvarez, The strong Atiyah and Lück approxima-tion conjectures for one-relator groups, Math. Ann. 376 (2020), 1741-1793. · Zbl 1481.20093
[35] A. Jaikin-Zapirain, I. Morales, Parafree fundamental groups of graphs of groups with cyclic edge subgroups, preprint arXiv:2110.11655.
[36] B. Jiang, H. Li, Sylvester rank functions for amenable normal extensions, J. Funct. Anal. 280 (2021), Paper No. 108913, 47. · Zbl 1482.16037
[37] O. Kharlampovich, A. Myasnikov, Elementary theory of free non-abelian groups, J. Algebra 302 (2006), 451-552. · Zbl 1110.03020
[38] E. I. Khukhro, V. D. Mazurov (eds.), The Kourovka notebook, Sobolev Institute of Mathematics. Russian Academy of Sciences. Siberian Branch, Novosibirsk, 2018.
[39] M. Lazard, Groupes analytiques p-adiques, Inst. Hautes Études Sci. Publ. Math. 26 (1965), 389-603. · Zbl 0139.02302
[40] ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
[41] J. Lewin, On the intersection of augmentation ideals, J. Algebra 16 (1970), 519-522. · Zbl 0238.20038
[42] H. Li, Bivariant and extended Sylvester rank functions, J. Lond. Math. Soc. 103 (2021), 222-249. · Zbl 1481.16001
[43] P. A. Linnell, Division rings and group von Neumann algebras, Forum Math. 5 (1993), 561-576. · Zbl 0794.22008
[44] D. López-Álvarez, Sylvester rank functions, epic division rings, and the strong Atiyah conjecture for locally indicable groups, Ph.D. Thesis, Universidad Autónoma de Madrid, 2021.
[45] A. Lubotzky, A. Shalev, On some ƒ-analytic pro-p groups, Israel J. Math. 85 (1994), 307-337. · Zbl 0819.20030
[46] W. Lück, Approximating L 2 -invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4 (1994), 455-481. · Zbl 0853.57021
[47] W. Lück, D. Osin, Approximating the first L 2 -Betti number of residually finite groups, J. Topol. Anal. 3 (2011), 153-160. · Zbl 1243.20039
[48] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory, second ed., Dover Publications, Mineola, NY, 2004. · Zbl 1130.20307
[49] A. I. Mal 0 cev, On isomorphic matrix representations of infinite groups, Mat. Sbornik 8 (1940), 405-422. · JFM 66.0088.03
[50] A. I. Mal 0 cev, On the embedding of group algebras in division algebras, Doklady Akad. Nauk SSSR (N.S.) 60 (1948), 1499-1501. · Zbl 0034.30901
[51] P. Malcolmson, Determining homomorphisms to skew fields, J. Algebra 64 (1980), 399-413. · Zbl 0442.16015
[52] I. Morales, Embeddings into pro-p groups and the construction of parafree groups, Master Thesis, Universidad Autónoma de Madrid, 2021.
[53] A. G. Myasnikov, V. N. Remeslennikov, Degree groups. I. Foundations of the theory and tensor completions, Sibirsk. Mat. Zh. 35 (1994), 1106-1118, iii. · Zbl 0851.20050
[54] A. G. Myasnikov, V. N. Remeslennikov, Exponential groups. II. Extensions of centralizers and tensor completion of CSA-groups, Internat. J. Algebra Comput. 6 (1996), 687-711. · Zbl 0866.20014
[55] B. H. Neumann, On ordered division rings, Trans. Amer. Math. Soc. 66 (1949), 202-252. · Zbl 0035.30401
[56] N. Nikolov, D. Segal, On finitely generated profinite groups. I. Strong completeness and uniform bounds, Ann. of Math. 165 (2007), 171-238. · Zbl 1126.20018
[57] L. Ribes, P. Zalesskii, Profinite groups, second ed., Ergebn. Math. Grenzg. 40, Springer, 2010. · Zbl 1197.20022
[58] J. J. Rotman, An introduction to homological algebra, second ed., Universitext, Springer, 2009. · Zbl 1157.18001
[59] J. Sánchez, On division rings and tilting modules, Ph.D. Thesis, Universitat Autònoma de Barcelona, 2008.
[60] A. Shalev, Lie methods in the theory of pro-p groups, in New horizons in pro-p groups, Progr. Math. 184, Birkhäuser, 2000, 1-54. · Zbl 0981.20020
[61] R. B. Warfield, Jr., Nilpotent groups, Lecture Notes in Math. 513, Springer, 1976. · Zbl 0347.20018
[62] E. Zelmanov, Infinite algebras and pro-p groups, in Infinite groups: geometric, combi-natorial and dynamical aspects, Progr. Math. 248, Birkhäuser, 2005, 403-413. · Zbl 1115.20023
[63] E. Zelmanov, Groups with identities, Note Mat. 36 (2016), 101-113. · Zbl 1403.20041
[64] A. N. Zubkov, Nonrepresentability of a free nonabelian pro-p-group by second-order matrices, Sibirsk. Mat. Zh. 28 (1987), 64-69; English translation: Siberian Math. J. 28 (1987), 742-746. (Manuscrit reçu le 5 décembre 2021 ; accepté le 27 décembre 2022.)
[65] Andrei Jaikin-Zapirain Departamento de Matemáticas Universidad Autónoma de Madrid and Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM E-mail: andrei.jaikin@uam.es ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.