×

Dense embeddings of surface groups. (English) Zbl 1132.22011

Summary: We discuss dense embeddings of surface groups and fully residually free groups in topological groups. We show that a compact topological group contains a nonabelian dense free group of finite rank if and only if it contains a dense surface group. Also, we obtain a characterization of those Lie groups which admit a dense faithfully embedded surface group. Similarly, we show that any connected semisimple Lie group contains a dense copy of any fully residually free group.

MSC:

22E40 Discrete subgroups of Lie groups
22E15 General properties and structure of real Lie groups
20H10 Fuchsian groups and their generalizations (group-theoretic aspects)

References:

[1] M Abert, Y Glasner, Generic groups acting on a regular tree, preprint · Zbl 1226.20021 · doi:10.1090/S0002-9947-09-04662-5
[2] G Baumslag, On generalised free products, Math. Z. 78 (1962) 423 · Zbl 0104.24402 · doi:10.1007/BF01195185
[3] E Breuillard, T Gelander, A topological Tits alternative, to appear in Annals of Math. · Zbl 1149.20039 · doi:10.4007/annals.2007.166.427
[4] E Breuillard, T Gelander, On dense free subgroups of Lie groups, J. Algebra 261 (2003) 448 · Zbl 1014.22007 · doi:10.1016/S0021-8693(02)00675-0
[5] Y de Cornulier, A Mann, Some residually finite groups satisfying laws, to appear in the proceedings of the conference “Asymptotic and Probabilistic Methods in Geometric Group Theory”, Geneva (2005) · Zbl 1147.20025
[6] D B A Epstein, Almost all subgroups of a Lie group are free, J. Algebra 19 (1971) 261 · Zbl 0222.22012 · doi:10.1016/0021-8693(71)90107-4
[7] T Gelander, Y Glasner, Countable primitive groups, to appear in Geom. Funct. Anal. · Zbl 1138.20005 · doi:10.1007/s00039-007-0630-y
[8] T Gelander, A Zuk, Dependence of Kazhdan constants on generating subsets, Israel J. Math. 129 (2002) 93 · Zbl 0993.22003 · doi:10.1007/BF02773155
[9] V Kaloshin, The existential Hilbert 16-th problem and an estimate for cyclicity of elementary polycycles, Invent. Math. 151 (2003) 451 · Zbl 1087.34013 · doi:10.1007/s00222-002-0244-9
[10] A Lubotzky, B Weiss, Groups and expanders, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 10, Amer. Math. Soc. (1993) 95 · Zbl 0787.05049
[11] G A Margulis, Some remarks on invariant means, Monatsh. Math. 90 (1980) 233 · Zbl 0425.43001 · doi:10.1007/BF01295368
[12] D Montgomery, L Zippin, Topological transformation groups, Interscience Publishers, New York-London (1955) · Zbl 0068.01904
[13] Z Sela, Diophantine geometry over groups I: Makanin-Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. (2001) 31 · Zbl 1018.20034 · doi:10.1007/s10240-001-8188-y
[14] D Sullivan, For \(n> 3\) there is only one finitely additive rotationally invariant measure on the \(n\)-sphere defined on all Lebesgue measurable subsets, Bull. Amer. Math. Soc. \((\)N.S.\()\) 4 (1981) 121 · Zbl 0459.28009 · doi:10.1090/S0273-0979-1981-14880-1
[15] J Tits, Free subgroups in linear groups, J. Algebra 20 (1972) 250 · Zbl 0257.20031 · doi:10.1016/0021-8693(72)90058-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.