×

On linear just infinite pro-\(p\) groups. (English) Zbl 1018.20022

The author studies linearity of pro-\(p\) groups over commutative rings and over commutative profinite rings, in particular linearity of just infinite pro-\(p\) groups, i.e. groups whose proper quotients are finite. A group \(G\) is called hereditarily just infinite if every proper quotient of any subgroup of finite index of \(G\) is finite. Among others the following results are proved.
Proposition 1.1. Let \(G\) be a just infinite pro-\(p\) group. Then \(G\) is insoluble if and only if every non-trivial normal (not necessarely closed) subgroup of \(G\) is open.
Corollary 1.2. Let \(G\) be an insoluble hereditarily just infinite pro-\(p\) group. Then \(G\) is hereditarily just infinite as an abstract group.
Corollary 1.5. Let \(G\) be a linear just infinite pro-\(p\) group over some commutative profinite ring. Then \(G\) is linear either over the \(p\)-adic integers \(\mathbb{Z}_p\) or over the power series ring \(\mathbb{F}_p[[t]]\), where \(\mathbb{F}_p\) is the field of \(p\) elements.
Theorem 1.8. Let \(G\) be a \(p\)-adic analytic pro-\(p\) group. Then \(G\) is linear over a field of positive characteristic if and only if \(G\) is virtually Abelian.

MSC:

20E18 Limits, profinite groups
20G25 Linear algebraic groups over local fields and their integers
Full Text: DOI

References:

[1] Dixon, J. D.; du Sautoy, M. P.F.; Mann, A.; Segal, D., Analytic Pro-\(p\) Groups (1999), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0934.20001
[2] Lubotzky, A.; Shalev, A., On some \(Λ\)-analytic pro-\(p\) groups, Israel J. Math., 85, 307-337 (1994) · Zbl 0819.20030
[3] Zubkov, A. N., Non-abelian free pro-\(p\) groups cannot be represented by-2-by-2 matrices, Sibirsk. Math. Zh.. Sibirsk. Math. Zh., Siberian Math. J., 28, 742-747 (1987), English translation · Zbl 0653.20026
[4] Barnea, Y.; Larsen, M., A non-abelian free pro-\(p\) group is not linear over local field, J. Algebra, 214, 338-341 (1999) · Zbl 0923.20018
[5] Klopsch, B., Normal subgroups in substitution groups of formal power series, J. Algebra, 228, 91-106 (2000) · Zbl 0964.20016
[6] Klaas, G.; Leedham-Green, C. R.; Plesken, W., Linear Pro-\(p\) Groups of Finite Width (1997), Springer-Verlag: Springer-Verlag Berlin · Zbl 0901.20013
[7] Pink, R., Compact subgroups of linear algebraic groups, J. Algebra, 206, 438-504 (1998) · Zbl 0914.20044
[8] (du Sautoy, M.; Segal, D.; Shalev, A., New Horizons in Pro-\(p\) Groups (2000), Birkhäuser: Birkhäuser Basel) · Zbl 0945.00009
[9] Shalev, A., Subgroup structure, fractal dimension, and Kac-Moody algebras, (Trends in Mathematics (1998), Birkhäuser: Birkhäuser Basel), 163-176 · Zbl 0913.17014
[10] Wilson, J. S., Profinite Groups (1998), Oxford University Press: Oxford University Press Oxford, UK · Zbl 0909.20001
[11] McConnell, J. C.; Robson, J. C., Noncommutative Noetherian Rings (1987), Wiley: Wiley New York · Zbl 0644.16008
[12] Margulis, G. A., Discrete Subgroups of Semisimple Lie groups (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0732.22008
[13] Platonov, V.; Rapinchuk, A., Algebraic Groups and Number Theory (1994), Academic Press: Academic Press San Diego · Zbl 0806.11002
[14] Wehrfritz, B. A.F., Infinite Linear Groups (1973), Springer-Verlag: Springer-Verlag Berlin · Zbl 0261.20038
[15] Pierce, R. S., Associative Algebras (1982), Springer-Verlag: Springer-Verlag Berlin · Zbl 0497.16001
[16] Kaplansky, I., Commutative Rings (1970), Allyan and Bacon: Allyan and Bacon Boston · Zbl 0203.34601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.