×

Optimality conditions and duality for multiobjective semi-infinite optimization problems with switching constraints on Hadamard manifolds. (English) Zbl 07903117

Summary: This paper deals with a certain class of multiobjective semi-infinite programming problems with switching constraints (in short, MSIPSC) in the framework of Hadamard manifolds. We introduce Abadie constraint qualification (in short, ACQ) for MSIPSC in the Hadamard manifold setting. Necessary criteria of weak Pareto efficiency for MSIPSC are derived by employing ACQ. Further, sufficient criteria of weak Pareto efficiency for MSIPSC are deduced by using geodesic quasiconvexity and pseudoconvexity assumptions. Subsequently, Mond-Weir type and Wolfe type dual models are formulated related to the primal problem MSIPSC, and thereafter, several duality results are established that relate MSIPSC and the corresponding dual models. Several non-trivial examples are furnished in the framework of well-known Hadamard manifolds, such as the set consisting of all symmetric positive definite matrices and the Poincaré half plane, to illustrate the importance of the results derived in this article. To the best of our knowledge, this is the first time that optimality conditions and duality results for MSIPSC have been studied in the setting of Hadamard manifolds.

MSC:

90C34 Semi-infinite programming
90C46 Optimality conditions and duality in mathematical programming
90C48 Programming in abstract spaces
90C29 Multi-objective and goal programming

Software:

Manopt; NSIPS
Full Text: DOI

References:

[1] Bacák, M.; Bergmann, R.; Steidl, G.; Weinmann, A., A second order nonsmooth variational model for restoring manifold-valued images, SIAM J. Sci. Comput., 38, 1, A567-A597, 2016 · Zbl 1382.94007 · doi:10.1137/15M101988X
[2] Barani, A., Generalized monotonicity and convexity for locally Lipschitz functions on Hadamard manifolds, Differ. Geom. Dyn. Syst., 15, 26-37, 2013 · Zbl 1326.26025
[3] Barani, A., On pseudoconvex functions in Riemannian manifolds, J. Finsler Geom. Appl., 2, 2, 14-22, 2021 · Zbl 1511.58003
[4] Belkin, M.; Niyogi, P., Semi-supervised learning on Riemannian manifolds, Mach. Learn., 56, 1, 209-239, 2004 · Zbl 1089.68086 · doi:10.1023/B:MACH.0000033120.25363.1e
[5] Bergmann, R.; Herzog, R., Intrinsic formulation of KKT conditions and constraint qualifications on smooth manifolds, SIAM J. Optim., 29, 4, 2423-2444, 2019 · Zbl 1434.90192 · doi:10.1137/18M1181602
[6] Boumal, N.; Mishra, B.; Absil, P-A; Sepulchre, R., Manopt, a matlab toolbox for optimization on manifolds, J. Mach. Learn. Res., 15, 1, 1455-1459, 2014 · Zbl 1319.90003
[7] Charnes, A.; Cooper, WW; Kortanek, KO, Duality, Haar programs, and finite sequence spaces, Proc. Natl. Acad. Sci. USA, 48, 5, 783, 1962 · Zbl 0105.12804 · doi:10.1073/pnas.48.5.783
[8] Chen, S.-I., Fang, C.-J.: Vector variational inequality with pseudoconvexity on Hadamard manifolds. Optimization 65(12), 2067-2080 (2016) · Zbl 1377.90084
[9] Clason, C.; Rund, A.; Kunisch, K.; Barnard, RC, A convex penalty for switching control of partial differential equations, Syst. Control Lett., 89, 66-73, 2016 · Zbl 1335.49042 · doi:10.1016/j.sysconle.2015.12.013
[10] Clason, C.; Rund, A.; Kunisch, K., Nonconvex penalization of switching control of partial differential equations, Syst. Control Lett., 106, 1-8, 2017 · Zbl 1376.49035 · doi:10.1016/j.sysconle.2017.05.006
[11] Ferreira, OP; Louzeiro, MS; Prudente, L., Gradient method for optimization on Riemannian manifolds with lower bounded curvature, SIAM J. Optim., 29, 4, 2517-2541, 2019 · Zbl 1429.90051 · doi:10.1137/18M1180633
[12] Fletcher, P.T., Moeller, J., Phillips, J.M., Venkatasubramanian, S.: Horoball hulls and extents in positive definite space. Algorithms Data Struct. 386-398 (2011) · Zbl 1342.68335
[13] Gao, X., Necessary optimality and duality for multiobjective semi-infinite programming, J. Theor. Appl. Inf. Technol., 46, 1, 347-354, 2012
[14] Goberna, MA; López, MA, Recent contributions to linear semi-infinite optimization: an update, Ann. Oper. Res., 271, 1, 237-278, 2018 · Zbl 1411.90341 · doi:10.1007/s10479-018-2987-8
[15] Ghosh, A.; Upadhyay, BB; Stancu-Minasian, IM, Pareto efficiency criteria and duality for multiobjective fractional programming problems with equilibrium constraints on Hadamard manifolds, Mathematics, 11, 17, 3649, 2023 · doi:10.3390/math11173649
[16] Ghosh, A.; Upadhyay, BB; Stancu-Minasian, IM, Constraint qualifications for multiobjective programming problems on Hadamard manifolds, Aust. J. Math. Anal. Appl., 20, 2, 1-17, 2023 · Zbl 1538.90140
[17] Gugat, M., Optimal switching boundary control of a string to rest in finite time, ZAMM J. Appl. Math. Mech., 88, 4, 283-305, 2008 · Zbl 1242.49008 · doi:10.1002/zamm.200700154
[18] Haar, A., Über lineare ungleichungen, Acta Litt. ac. Scient. Univ. Hung., 2, 1-14, 1924 · JFM 50.0699.02
[19] Hante, FM; Sager, S., Relaxation methods for mixed-integer optimal control of partial differential equations, Comput. Optim. Appl., 55, 1, 197-225, 2013 · Zbl 1272.49026 · doi:10.1007/s10589-012-9518-3
[20] Hettich, R.; Kortanek, KO, Semi-infinite programming: theory, methods, and applications, SIAM Rev., 35, 3, 380-429, 1993 · Zbl 0784.90090 · doi:10.1137/1035089
[21] Jennane, M.; Kalmoun, EM, On nonsmooth multiobjective semi-infinite programming with switching constraints using tangential subdifferentials, Stat. Optim. Inf. Comput., 11, 1, 22-28, 2023 · doi:10.19139/soic-2310-5070-1704
[22] Kanzi, N., Constraint qualifications in semi-infinite systems and their applications in nonsmooth semi-infinite problems with mixed constraints, SIAM J. Optim., 24, 2, 559-572, 2014 · Zbl 1297.90164 · doi:10.1137/130910002
[23] Kanzi, N.; Nobakhtian, S., Nonsmooth semi-infinite programming problems with mixed constraints, J. Math. Anal. Appl., 351, 1, 170-181, 2008 · Zbl 1172.90019 · doi:10.1016/j.jmaa.2008.10.009
[24] Kanzi, N.; Nobakhtian, S., Optimality conditions for non-smooth semi-infinite programming, Optimization, 59, 5, 717-727, 2010 · Zbl 1195.90088 · doi:10.1080/02331930802434823
[25] Kanzi, N.; Nobakhtian, S., Optimality conditions for nonsmooth semi-infinite multiobjective programming, Optim. Lett., 8, 4, 1517-1528, 2014 · Zbl 1311.90159 · doi:10.1007/s11590-013-0683-9
[26] Kanzow, C.; Mehlitz, P.; Steck, D., Relaxation schemes for mathematical programs with switching constraints, Optim. Methods Softw., 36, 6, 1-36, 2019
[27] Karkhaneei, MM; Mahdavi-Amiri, N., Nonconvex weak sharp minima on Riemannian manifolds, J. Optim. Theory Appl., 183, 85-104, 2019 · Zbl 1426.49014 · doi:10.1007/s10957-019-01539-2
[28] Li, G.; Guo, L., Mordukhovich stationarity for mathematical programs with switching constraints under weak constraint qualifications, Optimization, 72, 7, 1817-1838, 2023 · Zbl 07712954 · doi:10.1080/02331934.2022.2038151
[29] Liang, YC; Ye, JJ, Optimality conditions and exact penalty for mathematical programs with switching constraints, J. Optim. Theory Appl., 190, 1, 1-31, 2021 · Zbl 1534.90159 · doi:10.1007/s10957-021-01879-y
[30] Lim, Y.; Hiai, F.; Lawson, J., Nonhomogeneous Karcher equations with vector fields on positive definite matrices, Eur. J. Math., 7, 3, 1291-1328, 2021 · Zbl 1492.58003 · doi:10.1007/s40879-021-00469-6
[31] Liu, Y., Tseng, C.H., Teo, K.L: A unified quadratic semi-infinite programming approach to time and frequency domain constrained digital filter design. Commun. Inf. Syst. 2(4), 399-410 (2002) · Zbl 1103.94008
[32] Maeda, T., Constraint qualifications in multiobjective optimization problems: differentiable case, J. Optim. Theory Appl., 80, 3, 483-500, 1994 · Zbl 0797.90083 · doi:10.1007/BF02207776
[33] Mangasarian, O.L.: Nonlinear Programming, SIAM Classics in Applied Mathematics, vol. 10. McGraw-Hill, New York (1969). Reprint Philadelphia (1994) · Zbl 0194.20201
[34] Mehlitz, P., Stationarity conditions and constraint qualifications for mathematical programs with switching constraints, Math. Program., 181, 1, 149-186, 2020 · Zbl 1480.90230 · doi:10.1007/s10107-019-01380-5
[35] Mishra, SK; Upadhyay, BB, Pseudolinear Functions and Optimization, 2019, London: Chapman and Hall/CRC, London
[36] Mishra, SK; Jaiswal, M.; An, LTH, Duality for nonsmooth semi-infinite programming problems, Optim. Lett., 6, 2, 261-271, 2012 · Zbl 1280.90128 · doi:10.1007/s11590-010-0240-8
[37] Mordukhovich, BS, Variational Analysis and Generalized Differentiation II: Applications, Grundlehren Series (Fundamental Principles of Mathematical Sciences) 331, 2006, Berlin: Springer, Berlin · doi:10.1007/3-540-31246-3
[38] Pandey, Y., Singh, V.: On Constraint qualifications for multiobjective optimization problems with switching constraints. In Indo-French Seminar on Optimization, Variational Analysis and Applications, Springer: Singapore, pp. 283-306 (2020)
[39] Papa Quiroz, EA; Baygorrea Cusihuallpa, N.; Maculan, N., Inexact proximal point methods for multiobjective quasiconvex minimization on Hadamard manifolds, J. Optim. Theory Appl., 186, 3, 879-898, 2020 · Zbl 1447.49047 · doi:10.1007/s10957-020-01725-7
[40] Papa Quiroz, EA; Quispe, EM; Oliveira, PR, Steepest descent method with a generalized Armijo search for quasiconvex functions on Riemannian manifolds, J. Math. Anal. Appl., 341, 1, 467-477, 2009 · Zbl 1144.90030 · doi:10.1016/j.jmaa.2007.10.010
[41] Papa Quiroz, EA; Oliveira, PR, Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds, J. Convex Anal., 16, 1, 49-69, 2009 · Zbl 1176.90361
[42] Papa Quiroz, EA; Oliveira, PR, Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds, ESAIM Control Optim. Calc. Var., 18, 2, 483-500, 2012 · Zbl 1273.90162 · doi:10.1051/cocv/2011102
[43] Pennec, X.: Manifold-valued image processing with SPD matrices. In Riemannian Geometric Statistics in Medical Image Analysis. Amsterdam, The Netherlands: Elsevier, pp. 75-134 (2020) · Zbl 1453.62560
[44] Pham, T-H, Optimality conditions and duality for multiobjective semi-infinite programming with data uncertainty via Mordukhovich subdifferential, Yugosl. J. Oper. Res., 31, 4, 495-514, 2021 · doi:10.2298/YJOR201017013P
[45] Rapcsák, T., Smooth Nonlinear Optimization in \(\mathbb{R}^n\), 2013, Berlin: Springer, Berlin
[46] Ruiz-Garzón, G.; Osuna-Gómez, R.; Rufián-Lizana, A.; Hernández-Jiménez, B., Optimality and duality on Riemannian manifolds, Taiwan J. Math., 22, 5, 1245-1259, 2018 · Zbl 1402.49031 · doi:10.11650/tjm/180501
[47] Ruiz-Garzón, G.; Osuna-Gómez, R.; Ruiz-Zapatero, J., Necessary and sufficient optimality conditions for vector equilibrium problems on Hadamard manifolds, Symmetry, 11, 8, 1037, 2019 · doi:10.3390/sym11081037
[48] Seidman, TI, Optimal control of a diffusion/reaction/switching system, Evolut. Equ. Control Theory., 2, 4, 723-731, 2013 · Zbl 1276.49004 · doi:10.3934/eect.2013.2.723
[49] Gorgini Shabankareh, F.; Kanzi, N.; Fallahi, K.; Izadi, J., Stationarity in nonsmooth optimization with switching constraints, Iran. J. Sci. Technol. Trans. A Sci., 46, 3, 907-915, 2022 · doi:10.1007/s40995-022-01289-3
[50] Shapiro, A., Semi-infinite programming: duality, discretization and optimality conditions, Optimization, 58, 2, 133-161, 2009 · Zbl 1158.90410 · doi:10.1080/02331930902730070
[51] Shikhman, V., Topological approach to mathematical programs with switching constraints, Set-Valued Var. Anal., 30, 2, 335-354, 2022 · Zbl 1489.90142 · doi:10.1007/s11228-021-00581-5
[52] Treanţă, S.; Mishra, P.; Upadhyay, BB, Minty variational principle for nonsmooth interval-valued vector optimization problems on Hadamard manifolds Mathematics, 10, 3, 523, 2022
[53] Treanţă, S.; Upadhyay, BB; Ghosh, A.; Nonlaopon, K., Optimality conditions for multiobjective mathematical programming problems with equilibrium constraints on Hadamard manifolds, Mathematics, 10, 19, 3516, 2022 · doi:10.3390/math10193516
[54] Tung, LT, Karush-Kuhn-Tucker optimality conditions and duality for convex semi-infinite programming with multiple interval-valued objective functions, J. Appl. Math. Comput., 62, 1-2, 67-91, 2020 · Zbl 1475.90124 · doi:10.1007/s12190-019-01274-x
[55] Tung, LT; Tam, DH, Optimality conditions and duality for multiobjective semi-infinite programming on Hadamard manifolds, Bull. Iran. Math. Soc., 48, 2191-2219, 2022 · Zbl 1495.90231 · doi:10.1007/s41980-021-00646-z
[56] Tung, LT; Tam, DH; Singh, V., Characterization of solution sets of geodesic convex semi-infinite programming on Riemannian manifolds, Appl. Set-Valued Anal. Optim., 5, 1, 1-18, 2023
[57] Udrişte, C., Convex Functions and Optimization Methods on Riemannian Manifolds, 2013, Berlin: Springer, Berlin
[58] Upadhyay, BB; Ghosh, A., On constraint qualifications for mathematical programming problems with vanishing constraints on Hadamard manifolds, J. Optim. Theory Appl., 199, 1-35, 2023 · doi:10.1007/s10957-023-02207-2
[59] Upadhyay, BB; Ghosh, A.; Mishra, P.; Treanţă, S., Optimality conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds using generalized geodesic convexity, RAIRO Oper. Res., 56, 4, 2037-2065, 2022 · Zbl 1492.90185 · doi:10.1051/ro/2022098
[60] Upadhyay, BB; Ghosh, A.; Stancu-Minasian, IM, Second-order optimality conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds, Asia-Pac. J. Oper. Res., 2023 · doi:10.1142/S0217595923500197
[61] Upadhyay, BB; Ghosh, A.; Treanţă, S., Efficiency conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds, J. Glob. Optim., 2024 · Zbl 07878116 · doi:10.1007/s10898-024-01367-3
[62] Upadhyay, BB; Ghosh, A.; Treanţă, S., Optimality conditions and duality for nonsmooth multiobjective semi-infinite programming problems on Hadamard manifolds, Bull. Iran. Math. Soc., 49, 4, 1-36, 2023 · Zbl 1520.90192 · doi:10.1007/s41980-023-00791-7
[63] Upadhyay, BB; Ghosh, A.; Treanţă, S., Optimality conditions and duality for nonsmooth multiobjective semi-infinite programming problems with vanishing constraints on Hadamard manifolds, J. Math. Anal. Appl., 531, 1, 1-25, 2023 · Zbl 07852376
[64] Upadhyay, BB; Ghosh, A.; Treanţă, S., Constraint qualifications and optimality criteria for nonsmooth multiobjective optimization problems on Hadamard manifolds, J. Optim. Theory Appl., 2023 · Zbl 07802208 · doi:10.1007/s10957-023-02301-5
[65] Upadhyay, BB; Treanţă, S.; Mishra, P., On Minty variational principle for nonsmooth multiobjective optimization problems on Hadamard manifolds, Optimization, 72, 12, 3081-3100, 2023 · Zbl 1541.90345 · doi:10.1080/02331934.2022.2088369
[66] Vaz, AIF; Fernandes, EMGP; Gomes, MPSF, Robot trajectory planning with semi-infinite programming, Eur. J. Oper. Res., 153, 3, 607-617, 2004 · Zbl 1099.90582 · doi:10.1016/S0377-2217(03)00266-2
[67] Vaz, AIF; Ferreira, EC, Air pollution control with semi-infinite programming, Appl. Math. Model., 33, 4, 1957-1969, 2009 · Zbl 1205.90319 · doi:10.1016/j.apm.2008.05.008
[68] Wang, D.; Fang, S-C, A semi-infinite programming model for earliness/tardiness production planning with a genetic algorithm, Comput. Math. Appl., 31, 8, 95-106, 1996 · Zbl 0853.90066 · doi:10.1016/0898-1221(96)00034-X
[69] Wang, J.; Wang, X.; Li, C.; Yao, JC, Convergence analysis of gradient algorithms on Riemannian manifolds without curvature constraints and application to Riemannian mass, SIAM J. Optim., 31, 1, 172-199, 2021 · Zbl 1457.53022 · doi:10.1137/19M1289285
[70] Wang, L.; Yan, Q., Time optimal controls of semilinear heat equation with switching control, J. Optim. Theory Appl., 165, 1, 263-278, 2015 · Zbl 1323.35091 · doi:10.1007/s10957-014-0606-7
[71] Winterfeld, A., Application of general semi-infinite programming to lapidary cutting problems, Eur. J. Oper. Res., 191, 3, 838-854, 2008 · Zbl 1160.90581 · doi:10.1016/j.ejor.2007.01.057
[72] Yang, WH; Zhang, L-H; Song, R., Optimality conditions for the nonlinear programming problems on Riemannian manifolds, Pac. J. Optim., 10, 2, 415-434, 2014 · Zbl 1322.90096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.