×

Vector variational inequality with pseudoconvexity on Hadamard manifolds. (English) Zbl 1377.90084

The authors consider vector optimization and vector variational inequality problems on Hadamard manifolds. It is known that the scalar variational inequality serves as necessary optimality condition for the usual optimization problem and that they are equivalent if the cost function is pseudoconvex. Besides, these properties are extended for the usual and weak vector problems. The paper contains further extensions of these and some related properties for the case of vector problems on Hadamard manifolds with proper adjustment of the concepts.

MSC:

90C29 Multi-objective and goal programming
90C46 Optimality conditions and duality in mathematical programming
58E35 Variational inequalities (global problems) in infinite-dimensional spaces
Full Text: DOI

References:

[1] Giannessi F, Variational inequality and complementary problems (1980)
[2] DOI: 10.1007/978-1-4757-2878-1_8 · doi:10.1007/978-1-4757-2878-1_8
[3] DOI: 10.1023/B:JOTA.0000026137.18526.7a · Zbl 1140.90492 · doi:10.1023/B:JOTA.0000026137.18526.7a
[4] DOI: 10.1007/978-3-642-46607-6_44 · doi:10.1007/978-3-642-46607-6_44
[5] DOI: 10.1007/978-1-4613-0301-5_12 · doi:10.1007/978-1-4613-0301-5_12
[6] DOI: 10.1016/S0362-546X(97)00578-6 · Zbl 0956.49007 · doi:10.1016/S0362-546X(97)00578-6
[7] DOI: 10.1016/S0022-247X(03)00009-X · Zbl 1014.49014 · doi:10.1016/S0022-247X(03)00009-X
[8] DOI: 10.1007/BF02192119 · Zbl 0824.90124 · doi:10.1007/BF02192119
[9] DOI: 10.1007/BF00940531 · Zbl 0679.90055 · doi:10.1007/BF00940531
[10] Giorgi G, Mathematics of optimization: smooth and nonsmooth case (2004) · Zbl 1140.90003
[11] DOI: 10.1017/S000497270001618X · Zbl 0811.90096 · doi:10.1017/S000497270001618X
[12] Rapscák T, Smooth nonlinear optimization in Rn (1997)
[13] DOI: 10.1007/978-94-015-8390-9 · doi:10.1007/978-94-015-8390-9
[14] DOI: 10.1016/S0362-546X(02)00266-3 · Zbl 1016.49012 · doi:10.1016/S0362-546X(02)00266-3
[15] DOI: 10.1137/110834962 · Zbl 1257.49011 · doi:10.1137/110834962
[16] DOI: 10.1007/s11590-015-0896-1 · Zbl 1353.90137 · doi:10.1007/s11590-015-0896-1
[17] DOI: 10.1016/j.na.2011.02.023 · Zbl 1225.49046 · doi:10.1016/j.na.2011.02.023
[18] Ledyaev YS, Nonsmooth analysis on smooth manifolds (2007) · Zbl 1157.49021
[19] DOI: 10.1016/j.na.2010.03.057 · Zbl 1282.49023 · doi:10.1016/j.na.2010.03.057
[20] Barani A, Differ. Geom. Dyn. Syst 15 pp 26– (2013)
[21] DOI: 10.1016/j.jfa.2004.10.008 · Zbl 1067.49010 · doi:10.1016/j.jfa.2004.10.008
[22] DOI: 10.1080/02331939208843813 · Zbl 0814.49014 · doi:10.1080/02331939208843813
[23] Bazaraa MS, Nonlinear programming: theory and applications (1993)
[24] Chavel I, Riemannian geometry-a modern introduction (1993)
[25] DOI: 10.1007/978-1-4612-9923-3 · doi:10.1007/978-1-4612-9923-3
[26] DOI: 10.1112/jlms/jdn087 · Zbl 1171.58001 · doi:10.1112/jlms/jdn087
[27] DOI: 10.1007/s10898-003-3780-y · Zbl 1229.58007 · doi:10.1007/s10898-003-3780-y
[28] Németh SZ, Publicationes Math 54 pp 437– (1999)
[29] DOI: 10.1007/s10957-010-9688-z · Zbl 1208.53049 · doi:10.1007/s10957-010-9688-z
[30] Da Cruze JX, Balkan J. Geom. Appl 5 pp 69– (2000)
[31] DOI: 10.1016/0022-247X(82)90180-9 · Zbl 0504.58037 · doi:10.1016/0022-247X(82)90180-9
[32] Németh SZ, Pure Appl. Math 9 pp 417– (1999)
[33] DOI: 10.1007/s10898-011-9773-3 · Zbl 1255.49021 · doi:10.1007/s10898-011-9773-3
[34] DOI: 10.1007/BF00932654 · Zbl 0304.49026 · doi:10.1007/BF00932654
[35] DOI: 10.1007/978-3-642-21114-0 · Zbl 1223.90006 · doi:10.1007/978-3-642-21114-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.