×

Constraint qualifications and optimality criteria for nonsmooth multiobjective programming problems on Hadamard manifolds. (English) Zbl 07802208

Summary: This article deals with a class of constrained nonsmooth multiobjective programming problems (NMOPP) in the setting of Hadamard manifolds. The generalized Guignard constraint qualification (GGCQ), Abadie constraint qualification (ACQ), and the generalized ACQ (GACQ) are introduced in the framework of Hadamard manifolds for NMOPP using the notion of Clarke subdifferentials. Subsequently, by employing GGCQ and geodesic quasiconvexity assumptions, we establish Karush-Kuhn-Tucker (abbreviated as, KKT)-type necessary criteria of Pareto efficiency for NMOPP. Moreover, we establish that ACQ and GACQ are sufficient criteria for satisfaction of GGCQ. Several nontrivial numerical examples are furnished in manifold settings to demonstrate the validity of the derived results. To the best of our knowledge, this is the first time that ACQ, GACQ, GGCQ, and KKT-type necessary criteria of Pareto efficiency for NMOPP have been studied in manifold setting using Clarke subdifferentials.

MSC:

90C29 Multi-objective and goal programming
90C46 Optimality conditions and duality in mathematical programming
90C48 Programming in abstract spaces
90C30 Nonlinear programming

Software:

Manopt
Full Text: DOI

References:

[1] Absil, P-A; Mahony, R.; Sepulchre, R., Optimization Algorithms on Matrix Manifolds (2008), Princeton: Princeton University Press, Princeton · Zbl 1147.65043
[2] Azagra, D.; Ferrera, J.; López-Mesas, F., Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds, J. Funct. Anal., 220, 304-361 (2005) · Zbl 1067.49010
[3] Azagra, D.; Ferrera, J., Applications of proximal calculus to fixed point theory on Riemannian manifolds, Nonlinear Anal., 67, 154-174 (2007) · Zbl 1131.58006
[4] Barani, A., Generalized monotonicity and convexity for locally Lipschitz functions on Hadamard manifolds, Differ. Geom. Dyn. Syst., 15, 26-37 (2013) · Zbl 1326.26025
[5] Barani, A., On pseudoconvex functions in Riemannian manifolds, J. Finsler Geom. Appl., 2, 2, 14-22 (2021) · Zbl 1511.58003
[6] Bacák, M.; Bergmann, R.; Steidl, G.; Weinmann, A., A second order nonsmooth variational model for restoring manifold-valued images, SIAM J. Sci. Comput., 38, A567-A597 (2016) · Zbl 1382.94007
[7] Bačák, M., Convex Analysis and Optimization in Hadamard Spaces (2014), Berlin: De Gruyter, Berlin · Zbl 1299.90001
[8] Belkin, M.; Niyogi, P., Semi-supervised learning on Riemannian manifolds, Mach. Learn., 56, 1, 209-239 (2004) · Zbl 1089.68086
[9] Bergmann, R.; Herzog, R., Intrinsic formulation of KKT conditions and constraint qualifications on smooth manifolds, SIAM J. Optim., 29, 4, 2423-2444 (2019) · Zbl 1434.90192
[10] Bergmann, R.; Herzog, R.; Ortiz López, J.; Schiela, A., First-and second-order analysis for optimization problems with manifold-valued constraints, J. Optim. Theory Appl., 195, 2, 596-623 (2022) · Zbl 1511.90386
[11] Boumal, N.; Mishra, B.; Absil, P-A; Sepulchre, R., Manopt, a Matlab toolbox for optimization on manifolds, J. Mach. Learn. Res., 15, 1, 1455-1459 (2014) · Zbl 1319.90003
[12] Chen, S-I; Fang, C-J, Vector variational inequality with pseudoconvexity on Hadamard manifolds, Optimization, 65, 2067-2080 (2016) · Zbl 1377.90084
[13] Chen, S-I; Huang, N-J; O’Regan, D., Geodesic B-preinvex functions and multiobjective optimization problems on Riemannian manifolds, J. Appl. Math., 2014, Art. ID 524698, 12 pp. (2014) · Zbl 1406.90096
[14] Chryssochoos, I.; Vinter, RB, Optimal control problems on manifolds: a dynamic programming approach, J. Math. Anal. Appl., 287, 118-140 (2003) · Zbl 1029.49025
[15] Dutta, J.; Chandra, S., Convexificators, generalized convexity and vector optimization, Optimization, 53, 77-94 (2004) · Zbl 1079.90104
[16] Farrokhiniya, M.; Barani, A., Limiting subdifferential calculus and perturbed distance function in Riemannian manifolds, J. Glob. Optim., 77, 661-685 (2020) · Zbl 1440.58004
[17] Ferreira, OP, Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds, J. Math. Anal. Appl., 313, 587-597 (2006) · Zbl 1089.58005
[18] Ferreira, OP; Louzeiro, MS; Prudente, L., Gradient method for optimization on Riemannian manifolds with lower bounded curvature, SIAM J. Optim., 29, 4, 2517-2541 (2019) · Zbl 1429.90051
[19] Fletcher, P.T., Moeller, J., Phillips, J.M., Venkatasubramanian, S.: Horoball hulls and extents in positive definite space. In: Algorithms and Data Structures, pp. 386-398 (2011) · Zbl 1342.68335
[20] Giorgi, G.; Jimenez, B.; Novo, V., On constraint qualification in directionally differentiable multiobjective optimization problems, RAIRO-Oper. Res., 38, 255-274 (2004) · Zbl 1158.90421
[21] Giorgi, G.; Jimenez, B.; Novo, V., Strong Kuhn-Tucker conditions and constraint qualifications in locally Lipschitz multiobjective optimization problems, Top, 17, 2, 288-304 (2009) · Zbl 1198.90348
[22] Golestani, M.; Nobakhtian, S., Nonsmooth multiobjective programming and constraint qualifications, Optimization, 62, 6, 783-795 (2013) · Zbl 1302.90247
[23] Grohs, P.; Hosseini, S., \( \epsilon \)-subgradient algorithms for locally Lipschitz functions on Riemannian manifolds, Adv. Comput. Math., 42, 2, 333-360 (2016) · Zbl 1338.49029
[24] Gupta, R.; Srivastava, M., Constraint qualifications in nonsmooth multiobjective optimization problem, Filomat, 31, 3, 781-797 (2017) · Zbl 1488.90172
[25] Hamdi, A.; Mishra, SK; Mishra, SK, Decomposition methods based on augmented Lagrangians: a survey, Topics in Nonconvex Optimization, 175-203 (2011), New York: Springer, New York · Zbl 1247.90249
[26] Hosseini, S.; Pouryayevali, MR, Generalized gradients and characterization of epi-Lipschitz sets in Riemannian manifolds, Nonlinear Anal., 74, 3884-3895 (2011) · Zbl 1225.49046
[27] Jourani, A., Constraint qualifications and Lagrange multipliers in nondifferentiable programming problems, J. Optim. Theory Appl., 81, 533-548 (1994) · Zbl 0810.90136
[28] Karkhaneei, MM; Mahdavi-Amiri, N., Nonconvex weak sharp minima on Riemannian manifolds, J. Optim. Theory Appl., 183, 85-104 (2019) · Zbl 1426.49014
[29] Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (ed.) Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481-492. Berkeley (1950)
[30] Ledyaev, YS; Zhu, QJ, Nonsmooth analysis on smooth manifolds, Trans. Am. Math. Soc., 359, 3687-3732 (2007) · Zbl 1157.49021
[31] Li, XF, Constraint qualifications in nonsmooth multiobjective optimization, J. Optim. Theory Appl., 106, 373-398 (2000) · Zbl 0976.90092
[32] Lim, Y.; Hiai, F.; Lawson, J., Nonhomogeneous Karcher equations with vector fields on positive definite matrices, Eur. J. Math., 7, 3, 1291-1328 (2021) · Zbl 1492.58003
[33] Maeda, T., Constraint qualifications in multiobjective optimization problems: differentiable case, J. Optim. Theory Appl., 80, 3, 483-500 (1994) · Zbl 0797.90083
[34] Mangasarian, O.L.: Nonlinear Programming. SIAM Classics in Applied Mathematics, vol. 10. McGraw-Hill, New York (1969). Reprint Philadelphia (1994) · Zbl 0194.20201
[35] Mehlitz, P., Stationarity conditions and constraint qualifications for mathematical programs with switching constraints, Math. Program., 181, 1, 149-186 (2020) · Zbl 1480.90230
[36] Mishra, SK, Lagrange multipliers saddle points and scalarizations in composite multiobjective nonsmooth programming, Optimization, 38, 2, 93-105 (1996) · Zbl 0868.90099
[37] Mishra, SK; Mukherjee, RN, Generalized convex composite multiobjective nonsmooth programming and conditional proper efficiency, Optimization, 34, 53-66 (1995) · Zbl 0855.90115
[38] Mishra, SK; Singh, V.; Laha, V.; Mohapatra, RN; Xu, H.; Wang, S.; Wu, SY, On constraint qualifications for multiobjective optimization problems with vanishing constraints, Optimization Methods, Theory and Applications, 95-135 (2015), Heidelberg: Springer, Heidelberg · Zbl 1354.90129
[39] Mishra, SK; Upadhyay, BB, Pseudolinear Functions and Optimization (2019), London: Chapman and Hall/CRC, London
[40] Mishra, SK; Wang, SY; Lai, KK, Optimality and duality for multiple objective optimization under generalized type I univexity, J. Math. Anal. Appl., 303, 315-326 (2005) · Zbl 1090.90173
[41] Preda, V.; Chiescu, I., On constraint qualification in multiobjective optimization problems: semidifferentiable case, J. Optim. Theory Appl., 100, 417-433 (1999) · Zbl 0915.90231
[42] Papa Quiroz, EA; Baygorrea Cusihuallpa, N.; Maculan, N., Inexact proximal point methods for multiobjective quasiconvex minimization on Hadamard manifolds, J. Optim. Theory Appl., 186, 3, 879-898 (2020) · Zbl 1447.49047
[43] Papa Quiroz, EA; Quispe, EM; Oliveira, PR, Steepest descent method with a generalized Armijo search for quasiconvex functions on Riemannian manifolds, J. Math. Anal. Appl., 341, 1, 467-477 (2009) · Zbl 1144.90030
[44] Papa Quiroz, EA; Oliveira, PR, Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds, J. Convex Anal., 16, 49-69 (2009) · Zbl 1176.90361
[45] Papa Quiroz, EA; Oliveira, PR, Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds, ESAIM Control Optim. Cal. Var., 18, 2, 483-500 (2012) · Zbl 1273.90162
[46] Pennec, X.; Pennec, X.; Sommer, S.; Fletcher, T., Manifold-valued image processing with SPD matrices, Riemannian Geometric Statistics in Medical Image Analysis, 75-134 (2020), Amsterdam: Elsevier, Amsterdam · Zbl 1453.62560
[47] Rapcsák, T., Smooth Nonlinear Optimization in \({\mathbb{R} }^n (2013)\), Berlin: Springer, Berlin
[48] Ruiz-Garzón, G.; Osuna-Gómez, R.; Rufián-Lizana, A.; Hernández-Jiménez, B., Optimality and duality on Riemannian manifolds, Taiwan J. Math., 22, 1245-1259 (2018) · Zbl 1402.49031
[49] Ruiz-Garzón, G.; Osuna-Gómez, R.; Ruiz-Zapatero, J., Necessary and sufficient optimality conditions for vector equilibrium problems on Hadamard manifolds, Symmetry, 11, 1037 (2019)
[50] Stein, O., On constraint qualifications in nonsmooth optimization, J. Optim. Theory Appl., 121, 647-671 (2004) · Zbl 1062.49014
[51] Trean, S.; Upadhyay, BB; Ghosh, A.; Nonlaopon, K., Optimality conditions for multiobjective mathematical programming problems with equilibrium constraints on Hadamard manifolds, Mathematics, 10, 3516 (2022)
[52] Tung, LT; Tam, DH, Optimality conditions and duality for multiobjective semi-infinite programming on Hadamard manifolds, Bull. Iran. Math. Soc., 48, 2191-2219 (2022) · Zbl 1495.90231
[53] Udrişte, C., Convex Functions and Optimization Methods on Riemannian Manifolds (2013), Berlin: Springer, Berlin
[54] Upadhyay, BB; Ghosh, A., On constraint qualifications for mathematical programming problems with vanishing constraints on Hadamard manifolds, J. Optim. Theory Appl. (2023) · doi:10.1007/s10957-023-02207-2
[55] Upadhyay, BB; Ghosh, A.; Mishra, P.; Treanţă, S., Optimality conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds using generalized geodesic convexity, RAIRO Oper. Res., 56, 4, 2037-2065 (2022) · Zbl 1492.90185
[56] Upadhyay, BB; Ghosh, A.; Stancu-Minasian, IM, Second-order optimality conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds, Asia Pac. J. Oper. Res. (2023) · doi:10.1142/S0217595923500197
[57] Upadhyay, B.B., Ghosh, A., Treanţă, S.: Efficiency conditions and duality for multiobjective semi-infinite programming problems on Hadamard manifolds. Submitted in J. Glob. Optim. (2022)
[58] Upadhyay, BB; Ghosh, A.; Treanţă, S., Optimality conditions and duality for nonsmooth multiobjective semi-infinite programming problems on Hadamard manifolds, Bull. Iran. Math. Soc., 49, 45 (2023) · Zbl 1520.90192 · doi:10.1007/s41980-023-00791-7
[59] Upadhyay, BB; Treanţă, S.; Mishra, P., On Minty variational principle for nonsmooth multiobjective optimization problems on Hadamard manifolds, Optimization (2022) · Zbl 1541.90345 · doi:10.1080/02331934.2022.2088369
[60] Yang, WH; Zhang, L-H; Song, R., Optimality conditions for the nonlinear programming problems on Riemannian manifolds, Pac. J. Optim., 10, 415-434 (2014) · Zbl 1322.90096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.