×

Cohomology and deformations of left-symmetric Rinehart algebras. (English) Zbl 07900714

Summary: We introduce a notion of left-symmetric Rinehart algebras, which is a generalization of a left-symmetric algebras. The left multiplication gives rise to a representation of the corresponding sub-adjacent Lie-Rinehart algebra. We construct left-symmetric Rinehart algebra from \(\mathcal{O}\)-operators on Lie-Rinehart algebra. We extensively investigate representations of a left-symmetric Rinehart algebras. Moreover, we study deformations of left-symmetric Rinehart algebras, which is controlled by the second cohomology class in the deformation cohomology. We also give the relationships between \(\mathcal{O}\)-operators and Nijenhuis operators on left-symmetric Rinehart algebras.

MSC:

17D25 Lie-admissible algebras
53D17 Poisson manifolds; Poisson groupoids and algebroids
17B70 Graded Lie (super)algebras
17B56 Cohomology of Lie (super)algebras
14B12 Local deformation theory, Artin approximation, etc.

References:

[1] C. Bai. A further study on non-abelian phase spaces: left-symmetric algebraic approach and related geometry. Rev. Math. Phys, 18:545-564, 2006. · Zbl 1110.17008
[2] C. Bai. A unified algebraic approach to the classical yang-baxter equation. J. Phys. A: Math. Theor, 40:11073-11082, 2007. · Zbl 1118.17008
[3] C. Bai. Left-symmetric bialgebras and an analogue of the classical yang-baxter equation. Commun. Contemp. Math, 10:221-260, 2008. · Zbl 1173.17025
[4] R. Bkouche. Structures (k, a)-linéaires. C. R. Acad. Sci. Paris Sér, A-B 262:A373-A376, 1966. · Zbl 0139.25801
[5] D. Burde. Simple left-symmetric algebras with solvable Lie algebra. Manuscripta Math, 95(no. 3):397-411, 1998. · Zbl 0907.17008
[6] D. Burde. Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Cent. Eur. J. Math, 4:323-357, 2006. · Zbl 1151.17301
[7] J. M. Casas. Obstructions to Lie-Rinehart algebra extensions. Algebra Colloq, 18(1):83-104, 2011. · Zbl 1237.17020
[8] A. Cayley. On the theory of analytic forms called trees. Cayley, A., ed. Collected Mathe-matical Papers of Arthur Cayley, 3:242-246, 1890.
[9] F. Chapoton. M. livernet, pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not, pages 395-408, 2001. · Zbl 1053.17001
[10] S. Chemla. Operations for modules on Lie-Rinehart superalgebras. Manuscripta Math, 87(2):199-224, 1995. · Zbl 0999.17009
[11] L. Chen, M. Liu, and J. Liu. Cohomologies and crossed modules for pre-Lie Rinehart algebras. J. of Geom. and Phy, 176:104501, 2022. · Zbl 1505.17001
[12] Z. Chen, Z. Liu, and D. Zhong. Lie-Rinehart bialgebras for crossed products. J. Pure Appl. Algebra, 215(6):1270-1283, 2011. · Zbl 1217.17014
[13] I. Dorfman. Dirac structures and integrability of nonlinear evolution equation. Wiley,, 1993.
[14] M. Gerstenhaber. The cohomology structure of an associative ring. Ann. Math, 78:267-288, 1963. · Zbl 0131.27302
[15] J. Herz. Pseudo-algèbres de Lie. C. R. Acad. Sci. Paris, 236:1935-1937, 1953. · Zbl 0050.03201
[16] J. Huebschmann. Poisson cohomology and quantization. J. Reine Angew. Math, 408:57-113, 1990. · Zbl 0699.53037
[17] J. Huebschmann. Duality for Lie-Rinehart algebras and the modular class. J. Reine Angew. Math, 510:103-159, 1999. · Zbl 1034.53083
[18] J. Huebschmann. Lie-Rinehart algebras, descent, and quantization, in: Galois theory, hopf algebras, and semiabelian categories. Fields Inst. Commun, 43:295-316, 2004. · Zbl 1096.17006
[19] J. L. Koszul. Domaines bornés homogènes et orbites de groupes de transformations affines. Bull. Soc. Math. France, 89:515-533, 1961. · Zbl 0144.34002
[20] U. Krahmer and A. Rovi. A Lie-Rinehart algebra with no antipode. Comm. Algebra, 43(10):4049-4053, 2015. · Zbl 1381.17010
[21] B. A. Kupershmidt. Non-abelian phase spaces. J. Phys. A, 27:2801-2809, 1994. · Zbl 0842.58030
[22] B. A. Kupershmidt. What a classical r-matrix really is. J. Nonlinear Math. Phys, 6(4):448-488, 1999. · Zbl 1015.17015
[23] J. Liu, Y. Sheng, and C. Bai. Left-symmetric bialgebroids and their corresponding manin triples. Diff. Geom. Appl, 59:91-111, 2018. · Zbl 1431.53089
[24] J. Liu, Y. Sheng, and C. Bai. Pre-symplectic algebroids and their applications. Lett. Math. Phys, 108(3):779-804, 2018. · Zbl 1390.17029
[25] J. Liu, Y. Sheng, C. Bai, and Z. Chen. Left-symmetric algebroids. Math. Nach, 289(14-15):1893-1908, 2016. · Zbl 1354.18003
[26] K. Mackenzie. Lie groupoids and Lie algebroids in differential geometry. London Mathemat-ical Society Lecture Note Series, 124, 1987. · Zbl 0683.53029
[27] Y. Matsushima. Affine structures on complex mainfolds. Osaka J. Math, 5:215-222, 1968. · Zbl 0183.26201
[28] R. Palais. The cohomology of Lie rings. Amer. Math. Soc., Providence, R. I., Proc. Symp. Pure Math, pages 130-137, 1961. · Zbl 0126.03404
[29] G. Rinehart. Differential forms on general commutative algebras. Trans. Amer. Math. Soc, 108:195-222, 1963. · Zbl 0113.26204
[30] E. B. Vinberg. Convex homogeneous cones. Transl. Moscow Math. Soc, 12:340-403, 1963. · Zbl 0138.43301
[31] Q. Wang, C. Bai, J. Liu, and Y. Sheng. Nijenhuis operators on pre-Lie algebras. Commun. Contemp. Math, 21(7):1850050, 2019. · Zbl 1439.17023
[32] X. Xu. On simple novikov algebras and their irreducible modules. J. Algebra, 185(3):905-934, 1996. · Zbl 0863.17003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.