×

Operations for modules on Lie-Rinehart superalgebras. (English) Zbl 0999.17009

Summary: Let \(k\) be a field of characteristic 0 and let \(A\) be a supercommutative associative \(k\)-superalgebra. Let \({\mathcal L}\) be a \(k-A\)-Lie-Rinehart superalgebra. From these data, one can construct a superalgebra of differential operators \({\mathcal V}(A,{\mathcal L})\) (generalizing the enveloping superalgebra of a Lie superalgebra). We give a definition of Lie-Rinehart superalgebra morphisms allowing to generalize the notions of inverse image and direct image. We prove that a Lie-Rinehart superalgebra morphism decomposes into a closed imbedding and a projection. Furthermore, we see that, under some technical conditions, a closed imebedding decomposes into two closed imbeddings of different nature. The first one looks like a Lie superalgebra morphism. The second one looks like a supermanifold closed imbedding and satisfies a generalization of the Kashiwara’s theorem. Then, as in the \({\mathcal D}\)-module theory, we introduce a duality functor. Finally, we prove that, in the closed imbedding case, the direct image and the duality functor commute.

MSC:

17A70 Superalgebras
17B99 Lie algebras and Lie superalgebras

References:

[1] Almeida R.–Kumpera A.: Structure produit dans la catégorie des algébroides de Lie. Ann. Acad. Brasil Cienc53, 247–250 (1981) · Zbl 0484.58033
[2] Altman A.–Klein S.: Introduction to Grothendieck Duality. Lect. Notes Math.146, (1970) · Zbl 0215.37201
[3] Borel A.: Algebraic D-modules. Academic press (1987) · Zbl 0642.32001
[4] Bourbaki N.: Algèbre commutative, chapitre 2, Hermann (1961) · Zbl 0108.04002
[5] Brown K.A.–Levasseur T.: cohomology of bimodules over enveloping algebras, Math. Z.189, 393–413 (1985) · Zbl 0566.17005 · doi:10.1007/BF01164161
[6] Chemla S.: Propriété de dualité dans les représentations coinduites de superalgèbres de Lie. Ann. Inst. Fourier, Grenoble44, 4, 1067–1090 (1994) · Zbl 0815.17022
[7] Chemla S.: Poincaré duality fork–A-Lie superalgebras, Bull. Sté. Math. France.122, 371–397 (1994) · Zbl 0840.16032
[8] Chemla S.: Cohomologie locale de Grothendieck et représentations induites de superalgèbres de Lie. Math. Ann.297, 371–382 (1993) · Zbl 0788.17021 · doi:10.1007/BF01459508
[9] Fel’dman G.L.: Global dimension of rings of differential operators. Trans. Moscow. Math. Soc. no 1 123–147 (1982)
[10] Hartshorne R.: Algebraic geometry. Graduate Texts in Mathematics, Springer-Verlag (1977) · Zbl 0367.14001
[11] Hotta R.: Introduction toD-modules. Series of lectures given at the Institute of Mathematical Sciences, Madras, India
[12] Huebschmann J.: Poisson cohomology and quantization. J. reine angew. Math.408, 57–113 (1990) · Zbl 0699.53037 · doi:10.1515/crll.1990.408.57
[13] Hussemoller D.: Fiber bundles. Graduate Texts in Mathematics (1966)
[14] Kempf G.R.: The Ext-dual of a Verma module is a Verma module. J. Pure Appl. Algebra75, 47–49 (1991) · Zbl 0758.17004 · doi:10.1016/0022-4049(91)90087-I
[15] Leites D.A.: Introduction to the theory of supermanifolds. Uspeki Mat Nauk 35:1 (1980) · Zbl 0439.58007
[16] Leites D.A.: Spectra of graded commutative ring, Uspeki. Mat. Nauk.29, no3, p 209–210 (1974) (in Russian) · Zbl 0326.14001
[17] Levasseur T.: Critère d’induction et de coinduction pour certains anneaux d’opérateurs différentiels. J. Alg.110, no2, 530–562 (1987) · Zbl 0629.16003 · doi:10.1016/0021-8693(87)90065-2
[18] Manin Y.I.: Gauge field theory and complex geometry, A Series of comprehensive studies in mathematics, Springer-Verlag 1988
[19] Mackenzie K.: Lie Groupoids and Lie Algebroids in Differential Geometry. London Mathematical Society Lecture Note Series124, Cambridge University Press, 1987 · Zbl 0683.53029
[20] Penkov I.B.: D-modules on supermanifolds. Invent. Math.71, 501–512 (1983) · Zbl 0528.32012 · doi:10.1007/BF02095989
[21] Ogievetskii O.V. and Penkov I.B.: Serre duality for projective supermanifolds. Functional analysis and its applications18, 78–79 (1984) · Zbl 0563.58007 · doi:10.1007/BF01076371
[22] Rinehart G.S.: Differnetial form on general commutative algebras. Trans. Amer. Math. Soc.108, 195–222 (1963) · Zbl 0113.26204 · doi:10.1090/S0002-9947-1963-0154906-3
[23] Swan R.G.: Vector bundles and projective modules. Trans. Amer. Math. Soc.115, No 2, 261–277 (1962) · Zbl 0109.41601
[24] Vasconcelos, W.: Derivations of commutative noetherian rings. Math. Z.112, 229–233 (1969) · Zbl 0181.05201 · doi:10.1007/BF01110224
[25] Wells R. O.: Differential analysis on complex manifolds, Prentice-Hall, inc 1973 · Zbl 0262.32005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.