×

Regularity results for a class of nonlocal double phase equations with VMO coefficients. (English) Zbl 07898910

Summary: We study a class of nonlocal double phase problems with discontinuous coefficients. A local self-improving property and a higher Hölder continuity result for weak solutions to such problems are obtained under the assumptions that the associated coefficient functions are of VMO (vanishing mean oscillation) type and that the principal coefficient depends not only on the variables but also on the solution itself.

MSC:

35B65 Smoothness and regularity of solutions to PDEs
35J60 Nonlinear elliptic equations
35R11 Fractional partial differential equations

References:

[1] P. Auscher, S. Bortz, M. Egert, and O. Saari, Nonlocal self-improving properties: a functional analytic approach, Tunis. J. Math. 1(2) (2019), 151-183. DOI: . Digital Object Identifier: 10.2140/tunis.2019.1.151 Google Scholar: Lookup Link · Zbl 1409.35043 · doi:10.2140/tunis.2019.1.151
[2] P. Baroni, M. Colombo, and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations 57(2) (2018), Paper no. 62, 48 pp. DOI: . Digital Object Identifier: 10.1007/s00526-018-1332-z Google Scholar: Lookup Link · Zbl 1394.49034 · doi:10.1007/s00526-018-1332-z
[3] L. Brasco and E. Lindgren, Higher Sobolev regularity for the fractional \(p\)-Laplace equation in the superquadratic case, Adv. Math. 304 (2017), 300-354. DOI: . Digital Object Identifier: 10.1016/j.aim.2016.03.039 Google Scholar: Lookup Link · Zbl 1364.35055 · doi:10.1016/j.aim.2016.03.039
[4] L. Brasco, E. Lindgren, and A. Schikorra, Higher Hölder regularity for the fractional \(p\)-Laplacian in the superquadratic case, Adv. Math. 338 (2018), 782-846. DOI: . Digital Object Identifier: 10.1016/j.aim.2018.09.009 Google Scholar: Lookup Link · Zbl 1400.35049 · doi:10.1016/j.aim.2018.09.009
[5] S.-S. Byun, H. Kim, and J. Ok, Local Hölder continuity for fractional nonlocal equations with general growth, Math. Ann. 387(1-2) (2023), 807-846. DOI: . Digital Object Identifier: 10.1007/s00208-022-02472-y Google Scholar: Lookup Link · Zbl 1522.35543 · doi:10.1007/s00208-022-02472-y
[6] S.-S. Byun, J. Ok, and K. Song, Hölder regularity for weak solutions to nonlocal double phase problems, J. Math. Pures Appl. (9) 168 (2022), 110-142. DOI: . Digital Object Identifier: 10.1016/j.matpur.2022.11.001 Google Scholar: Lookup Link · Zbl 1504.35104 · doi:10.1016/j.matpur.2022.11.001
[7] S.-S. Byun, D. K. Palagachev, and P. Shin, Global continuity of solutions to quasilinear equations with Morrey data, C. R. Math. Acad. Sci. Paris 353(8) (2015), 717-721. DOI: . Digital Object Identifier: 10.1016/j.crma.2015.06.003 Google Scholar: Lookup Link · Zbl 1321.35058 · doi:10.1016/j.crma.2015.06.003
[8] L. A. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Colloq. Publ. 43, American Mathematical Society, Providence, RI, 1995. DOI: . Digital Object Identifier: 10.1090/coll/043 Google Scholar: Lookup Link · Zbl 0834.35002 · doi:10.1090/coll/043
[9] L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal. 200(1) (2011), 59-88. DOI: . Digital Object Identifier: 10.1007/s00205-010-0336-4 Google Scholar: Lookup Link · Zbl 1231.35284 · doi:10.1007/s00205-010-0336-4
[10] L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincaré C Anal. Non Linéaire 33(3) (2016), 767-807. DOI: . Digital Object Identifier: 10.1016/j.anihpc.2015.01.004 Google Scholar: Lookup Link · Zbl 1381.35211 · doi:10.1016/j.anihpc.2015.01.004
[11] J. Chaker, M. Kim, and M. Weidner, Regularity for nonlocal problems with non-standard growth, Calc. Var. Partial Differential Equations 61(6) (2022), Paper no. 227, 31 pp. DOI: . Digital Object Identifier: 10.1007/s00526-022-02364-8 Google Scholar: Lookup Link · Zbl 1501.35106 · doi:10.1007/s00526-022-02364-8
[12] M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal. 218(1) (2015), 219-273. DOI: . Digital Object Identifier: 10.1007/s00205-015-0859-9 Google Scholar: Lookup Link · Zbl 1325.49042 · doi:10.1007/s00205-015-0859-9
[13] M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215(2) (2015), 443-496. DOI: . Digital Object Identifier: 10.1007/s00205-014-0785-2 Google Scholar: Lookup Link · Zbl 1322.49065 · doi:10.1007/s00205-014-0785-2
[14] M. Cozzi, Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: A unified approach via fractional De Giorgi classes, J. Funct. Anal. 272(11) (2017), 4762-4837. DOI: . Digital Object Identifier: 10.1016/j.jfa.2017.02.016 Google Scholar: Lookup Link · Zbl 1366.49040 · doi:10.1016/j.jfa.2017.02.016
[15] C. De Filippis and G. Mingione, Lipschitz bounds and nonautonomous integrals, Arch. Ration. Mech. Anal. 242(2) (2021), 973-1057. DOI: . Digital Object Identifier: 10.1007/s00205-021-01698-5 Google Scholar: Lookup Link · Zbl 1483.49050 · doi:10.1007/s00205-021-01698-5
[16] C. De Filippis and G. Mingione, Gradient regularity in mixed local and nonlocal problems, Math. Ann. 388(1) (2024), 261-328. DOI: . Digital Object Identifier: 10.1007/s00208-022-02512-7 Google Scholar: Lookup Link · Zbl 1532.49035 · doi:10.1007/s00208-022-02512-7
[17] C. De Filippis and G. Palatucci, Hölder regularity for nonlocal double phase equations, J. Differential Equations 267(1) (2019), 547-586. DOI: . Digital Object Identifier: 10.1016/j.jde.2019.01.017 Google Scholar: Lookup Link · Zbl 1412.35041 · doi:10.1016/j.jde.2019.01.017
[18] A. Di Castro, T. Kuusi, and G. Palatucci, Local behavior of fractional \(p\)-minimizers, Ann. Inst. H. Poincaré C Anal. Non Linéaire 33(5) (2016), 1279-1299. DOI: . Digital Object Identifier: 10.1016/j.anihpc.2015.04.003 Google Scholar: Lookup Link · Zbl 1355.35192 · doi:10.1016/j.anihpc.2015.04.003
[19] M. M. Fall, Regularity results for nonlocal equations and applications, Calc. Var. Partial Differential Equations 59(5) (2020), Paper no. 181, 53 pp. DOI: . Digital Object Identifier: 10.1007/s00526-020-01821-6 Google Scholar: Lookup Link · Zbl 1450.35093 · doi:10.1007/s00526-020-01821-6
[20] M. M. Fall, T. Mengesha, A. Schikorra, and S. Yeepo, Calderón-Zygmund theory for non-convolution type nonlocal equations with continuous coefficient, Partial Differ. Equ. Appl. 3(2) (2022), Paper no. 24, 27 pp. DOI: . Digital Object Identifier: 10.1007/s42985-022-00161-8 Google Scholar: Lookup Link · Zbl 1487.35133 · doi:10.1007/s42985-022-00161-8
[21] Y. Fang and C. Zhang, On weak and viscosity solutions of nonlocal double phase equations, Int. Math. Res. Not. IMRN 2023(5) (2023), 3746-3789. DOI: . Digital Object Identifier: 10.1093/imrn/rnab351 Google Scholar: Lookup Link · Zbl 1520.35159 · doi:10.1093/imrn/rnab351
[22] J. Giacomoni, D. Kumar, and K. Sreenadh, Hölder regularity results for parabolic nonlocal double phase problems, Adv. Differential Equations (to appear). arXiv:. arXiv: 2112.04287v4
[23] J. Giacomoni, D. Kumar, and K. Sreenadh, Global regularity results for non-homogeneous growth fractional problems, J. Geom. Anal. 32(1) (2022), Paper no. 36, 41 pp. DOI: . Digital Object Identifier: 10.1007/s12220-021-00837-4 Google Scholar: Lookup Link · Zbl 1485.35192 · doi:10.1007/s12220-021-00837-4
[24] J. Giacomoni, D. Kumar, and K. Sreenadh, Interior and boundary regularity results for strongly nonhomogeneous \(p,q\)-fractional problems, Adv. Calc. Var. 16(2) (2023), 467-501. DOI: . Digital Object Identifier: 10.1515/acv-2021-0040 Google Scholar: Lookup Link · Zbl 1511.35063 · doi:10.1515/acv-2021-0040
[25] E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. DOI: . Digital Object Identifier: 10.1142/9789812795557 Google Scholar: Lookup Link · Zbl 1028.49001 · doi:10.1142/9789812795557
[26] M. Kassmann, A priori estimates for integro-differential operators with measurable kernels, Calc. Var. Partial Differential Equations 34(1) (2009), 1-21. DOI: . Digital Object Identifier: 10.1007/s00526-008-0173-6 Google Scholar: Lookup Link · Zbl 1158.35019 · doi:10.1007/s00526-008-0173-6
[27] J. Korvenpää, T. Kuusi, and G. Palatucci, The obstacle problem for nonlinear integro-differential operators, Calc. Var. Partial Differential Equations 55(3) (2016), Art. 63, 29 pp. DOI: . Digital Object Identifier: 10.1007/s00526-016-0999-2 Google Scholar: Lookup Link · Zbl 1346.35214 · doi:10.1007/s00526-016-0999-2
[28] T. Kuusi, G. Mingione, and Y. Sire, Nonlocal self-improving properties, Anal. PDE 8(1) (2015), 57-114. DOI: . Digital Object Identifier: 10.2140/apde.2015.8.57 Google Scholar: Lookup Link · Zbl 1317.35284 · doi:10.2140/apde.2015.8.57
[29] P. Marcellini, Regularity and existence of solutions of elliptic equations with \(p,q\)-growth conditions, J. Differential Equations 90(1) (1991), 1-30. DOI: . Digital Object Identifier: 10.1016/0022-0396(91)90158-6 Google Scholar: Lookup Link · Zbl 0724.35043 · doi:10.1016/0022-0396(91)90158-6
[30] T. Mengesha, A. Schikorra, and S. Yeepo, Calderón-Zygmund type estimates for nonlocal PDE with Hölder continuous kernel, Adv. Math. 383 (2021), Paper no. 107692, 64 pp. DOI: . Digital Object Identifier: 10.1016/j.aim.2021.107692 Google Scholar: Lookup Link · Zbl 1462.35117 · doi:10.1016/j.aim.2021.107692
[31] S. Nowak, Higher Hölder regularity for nonlocal equations with irregular kernel, Calc. Var. Partial Differential Equations 60(1) (2021), Paper no. 24, 37 pp. DOI: . Digital Object Identifier: 10.1007/s00526-020-01915-1 Google Scholar: Lookup Link · Zbl 1509.35087 · doi:10.1007/s00526-020-01915-1
[32] S. Nowak, Regularity theory for nonlocal equations with VMO coefficients, Ann. Inst. H. Poincaré C Anal. Non Linéaire 40(1) (2023), 61-132. DOI: . Digital Object Identifier: 10.4171/aihpc/37 Google Scholar: Lookup Link · Zbl 1510.35358 · doi:10.4171/aihpc/37
[33] S. Nowak, Improved Sobolev regularity for linear nonlocal equations with VMO coefficients, Math. Ann. 385(3-4) (2023), 1323-1378. DOI: . Digital Object Identifier: 10.1007/s00208-022-02369-w Google Scholar: Lookup Link · Zbl 1511.35361 · doi:10.1007/s00208-022-02369-w
[34] D. K. Palagachev, Global Hölder continuity of weak solutions to quasilinear divergence form elliptic equations, J. Math. Anal. Appl. 359(1) (2009), 159-167. DOI: . Digital Object Identifier: 10.1016/j.jmaa.2009.05.044 Google Scholar: Lookup Link · Zbl 1177.35080 · doi:10.1016/j.jmaa.2009.05.044
[35] A. Schikorra, Nonlinear commutators for the fractional \(p\)-Laplacian and applications, Math. Ann. 366(1-2) (2016), 695-720. DOI: . Digital Object Identifier: 10.1007/s00208-015-1347-0 Google Scholar: Lookup Link · Zbl 1351.35255 · doi:10.1007/s00208-015-1347-0
[36] J. M. Scott and T. Mengesha, A note on estimates of level sets and their role in demonstrating regularity of solutions to nonlocal double phase equations, Preprint (2020). arXiv:. arXiv: 2011.12779v1
[37] J. M. Scott and T. Mengesha, Self-improving inequalities for bounded weak solutions to nonlocal double phase equations, Commun. Pure Appl. Anal. 21(1) (2022), 183-212. DOI: . Digital Object Identifier: 10.3934/cpaa.2021174 Google Scholar: Lookup Link · Zbl 1481.35105 · doi:10.3934/cpaa.2021174
[38] R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Math. Surveys Monogr. 49, American Mathematical Society, Providence, RI, 1997. DOI: . Digital Object Identifier: 10.1090/surv/049 Google Scholar: Lookup Link · Zbl 0870.35004 · doi:10.1090/surv/049
[39] L. Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana Univ. Math. J. 55(3) (2006), 1155-1174. DOI: . Digital Object Identifier: 10.1512/iumj.2006.55.2706 Google Scholar: Lookup Link · Zbl 1101.45004 · doi:10.1512/iumj.2006.55.2706
[40] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 50(4) (1986), 675-710, 877. English translation: Math. USSR-Izv. 29(1) (1987), 3-366. · Zbl 0599.49031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.