×

Nonlinear commutators for the fractional \(p\)-Laplacian and applications. (English) Zbl 1351.35255

The author proves a nonlinear commutator estimate regarding the transfer of derivatives onto testfunctions for the fractional \(p\)-Laplacian operator. This implies that solutions to certain degenerate nonlocal equations are higher differentiable. Moreover, weakly fractional \(p\)-harmonic functions that are a priori less regular than the variational solutions, are in fact classical. As an application of these results, the author shows that sequences of uniformly bounded \(\frac{n}{s}\)-harmonic maps converge strongly outside at most finitely many points.

MSC:

35R11 Fractional partial differential equations
35D30 Weak solutions to PDEs
35B45 A priori estimates in context of PDEs
35J60 Nonlinear elliptic equations
47G20 Integro-differential operators
35S05 Pseudodifferential operators as generalizations of partial differential operators
58E20 Harmonic maps, etc.

References:

[1] Adams, D.R.: A note on Riesz potentials. Duke Math. J. 42(4), 765-778 (1975) · Zbl 0336.46038 · doi:10.1215/S0012-7094-75-04265-9
[2] Bjorland, C., Caffarelli, L., Figalli, A.: Non-local gradient dependent operators. Adv. Math. 230(4-6), 1859-1894 (2012) · Zbl 1252.35099 · doi:10.1016/j.aim.2012.03.032
[3] Blatt, S., Reiter, Ph., Schikorra, A.: Harmonic analysis meets critical knots (stationary points of the moebius energy are smooth). Trans. AMS (2014, accepted) · Zbl 1335.49074
[4] Bourgain, J., Brézis, H., Mironescu, P.: Another look at sobolev spaces. Optimal control and partial differential equations, pp. 439-455 (2001) · Zbl 1103.46310
[5] Brasco, L., Lindgren, E.: Higher sobolev regularity for the fractional \[p\] p-Laplace equation in the superquadratic case (2015, preprint). arXiv:1508.01039 · Zbl 1364.35055
[6] Bucur, C., Valdinoci, E.: Nonlocal diffusion and applications (2015, preprint). arXiv:1504.08292 · Zbl 1377.35002
[7] Da Lio, F.: Fractional harmonic maps into manifolds in odd dimension \[n {\>} 1\] n1. Calc. Var. Partial Differ. Equ. 48(3-4), 421-445 (2013) · Zbl 1281.58007 · doi:10.1007/s00526-012-0556-6
[8] Da Lio, F.: Compactness and bubbles analysis for half-harmonic maps into spheres. Ann Inst. Henri Poincaré, Analyse non linèaire 32, 201-224 (2015) · Zbl 1310.58011 · doi:10.1016/j.anihpc.2013.11.003
[9] Da Lio, F., Rivière, T.: Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps. Adv. Math. 227(3), 1300-1348 (2011) · Zbl 1219.58004 · doi:10.1016/j.aim.2011.03.011
[10] Da Lio, F., Rivière, T.: Three-term commutator estimates and the regularity of 1/2-harmonic maps into spheres. Anal. Partial Differ. Equ. 4(1), 149-190 (2011) · Zbl 1241.35035
[11] Di Castro, A., Kuusi, T., Palatucci, G.: Local behaviour of fractional \[p\] p-minimizers (2014, preprint) · Zbl 1355.35192
[12] Di Castro, A., Kuusi, T., Palatucci, G.: Nonlocal harnack inequalities. J. Funct. Anal. 267, 1807-1836 (2014) · Zbl 1302.35082 · doi:10.1016/j.jfa.2014.05.023
[13] Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[14] Grafakos, L.: Modern Fourier Analysis, Graduate Texts in Mathematics, vol. 250, 2nd edn. Springer, New York (2009) · Zbl 1158.42001
[15] Iannizzotto, A., Mosconi, S., Squassina, M.: Global hölder regularity for the fractional p-laplacian. arXiv:1411.2956 (2014) · Zbl 1433.35447
[16] Iwaniec, T.: \[p\] p-harmonic tensors and quasiregular mappings. Ann. Math. (2) 136(3), 589-624 (1992) · Zbl 0785.30009 · doi:10.2307/2946602
[17] Iwaniec, T., Sbordone, C.: Weak minima of variational integrals. J. Reine Angew. Math. 454, 143-161 (1994) · Zbl 0802.35016
[18] Kuusi, T., Mingione, G., Sire, Y.: A fractional Gehring lemma, with applications to nonlocal equations. Rend. Lincei Mat. Appl. 25, 345-358 (2014) · Zbl 1325.35260
[19] Kuusi, T., Mingione, G., Sire, Y.: Nonlocal equations with measure data. Commun. Math. Phys. 337, 1317-1368 (2015) · Zbl 1323.45007 · doi:10.1007/s00220-015-2356-2
[20] Kuusi, T., Mingione, G., Sire, Y.: Nonlocal self-improving properties. Anal. PDE 8, 57-114 (2015) · Zbl 1317.35284 · doi:10.2140/apde.2015.8.57
[21] Schikorra, A.: Epsilon-regularity for systems involving non-local, antisymmetric operators (2012, preprint) · Zbl 1348.58009
[22] Schikorra, A.: Regularity of n/2-harmonic maps into spheres. J. Differ. Equ. 252, 1862-1911 (2012) · Zbl 1237.58018 · doi:10.1016/j.jde.2011.08.021
[23] Schikorra, A.: Integro-differential harmonic maps into spheres. Commun. Partial Differ Equ. 40(1), 506-539 (2015) · Zbl 1329.58013 · doi:10.1080/03605302.2014.974059
[24] Triebel, H.: Theory of Function Spaces, Monographs in Mathematics, vol. 78. Birkhäuser, Basel (1983) · Zbl 1235.46002 · doi:10.1007/978-3-0346-0416-1
[25] Vazquez, J.-L.: The dirichlet problem for the fractional p-laplacian evolution equation (2015, preprint). arXiv:1506.00210 · Zbl 1323.45007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.