×

Regularity results for nonlocal equations and applications. (English) Zbl 1450.35093

Summary: We introduce the concept of \(C^{m,\alpha}\)-nonlocal operators, extending the notion of second order elliptic operator in divergence form with \(C^{m,\alpha}\)-coefficients. We then derive the nonlocal analogue of the key existing results for elliptic equations in divergence form, notably the Hölder continuity of the gradient of the solutions in the case of \(C^{0,\alpha}\)-coefficients and the classical Schauder estimates for \(C^{m+1,\alpha}\)-coefficients. We further apply the regularity results for \(C^{m,\alpha}\)-nonlocal operators to derive optimal higher order regularity estimates of Lipschitz graphs with prescribed Nonlocal Mean Curvature. Applications to nonlocal equation on manifolds are also provided.

MSC:

35B65 Smoothness and regularity of solutions to PDEs
35B45 A priori estimates in context of PDEs
35J15 Second-order elliptic equations
35R11 Fractional partial differential equations
47G20 Integro-differential operators

References:

[1] Abatangelo, N.; Dupaigne, L., Nonhomogeneous boundary conditions for the spectral fractional Laplacian, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34, 2, 439-467 (2017) · Zbl 1372.35327 · doi:10.1016/j.anihpc.2016.02.001
[2] Abatangelo, N., Valdinoci, E.: Getting acquainted with the fractional Laplacian. In: Contemporary Research in Elliptic PDEs and Related Topics, pp. 1-105 · Zbl 1432.35216
[3] Barles, G.; Chasseigne, E.; Imbert, C., Hölder continuity of solutions of second-order elliptic integro-differential equations, J. Eur. Math. Soc., 13, 1-26 (2011) · Zbl 1207.35277 · doi:10.4171/JEMS/242
[4] Barrios, B.; Figalli, A.; Valdinoci, E., Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13, 609-639 (2014) · Zbl 1316.35061
[5] Bass, R.; Levin, D., Harnack inequalities for jump processes, Potent. Anal., 17, 375-388 (2002) · Zbl 0997.60089 · doi:10.1023/A:1016378210944
[6] Bombieri, E.; De Giorgi, E.; Miranda, M., Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche, Arch. Ration. Mech. Anal., 32, 255-267 (1969) · Zbl 0184.32803 · doi:10.1007/BF00281503
[7] Bucur, C.; Squassina, M., Asymptotic mean value properties for fractional anisotropic operators, J. Math. Anal. Appl., 466, 1, 107-126 (2018) · Zbl 1394.35546 · doi:10.1016/j.jmaa.2018.05.063
[8] Cabré, X.; Cozzi, M., A gradient estimate for nonlocal minimal graphs, Duke Math. J., 168, 5, 775-848 (2019) · Zbl 1421.53011 · doi:10.1215/00127094-2018-0052
[9] Cabré, X.; Fall, MM; Weth, T., Near-sphere lattices with constant nonlocal mean curvature, Math. Ann., 370, 3, 1513-1569 (2018) · Zbl 1392.53015 · doi:10.1007/s00208-017-1559-6
[10] Caffarelli, L.; Chan, CH; Vasseur, A., Regularity theory for parabolic nonlinear integral operators, J. Am. Math. Soc, 24, 3, 849-869 (2011) · Zbl 1223.35098 · doi:10.1090/S0894-0347-2011-00698-X
[11] Caffarelli, L.; Roquejoffre, J-M; Savin, O., Nonlocal minimal surfaces, Commun. Pure Appl. Math., 63, 1111-1144 (2010) · Zbl 1248.53009
[12] Caffarelli, L.; Silvestre, L., Regularity theory for fully nonlinear integro-differential equations, Commun. Pure Appl. Math., 62, 597-638 (2009) · Zbl 1170.45006 · doi:10.1002/cpa.20274
[13] Caffarelli, L.; Silvestre, L., Regularity results for nonlocal equations by approximation, Arch. Rat. Mech. Anal., 200, 59-88 (2011) · Zbl 1231.35284 · doi:10.1007/s00205-010-0336-4
[14] Caffarelli, L.; Silvestre, L., The Evans-Krylov theorem for nonlocal fully nonlinear equations, Ann. Math., 174, 1163-1187 (2011) · Zbl 1232.49043 · doi:10.4007/annals.2011.174.2.9
[15] Caffarelli, L.; Souganidis, PE, Convergence of nonlocal threshold dynamics approximations to front propagation, Arch. Ration. Mech. Anal., 195, 1-23 (2010) · Zbl 1190.65132 · doi:10.1007/s00205-008-0181-x
[16] Caffarelli, L.; Valdinoci, E., Regularity properties of nonlocal minimal surfaces via limiting arguments, Adv. Math., 248, 25, 843-871 (2011) · Zbl 1284.53008
[17] Cozzi, M., Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: a unified approach via fractional De Giorgi classes, J. Funct. Anal., 272, 11, 4762-4837 (2017) · Zbl 1366.49040 · doi:10.1016/j.jfa.2017.02.016
[18] Dávila, J., del Pino, M., Wei, J.: Nonlocal \(s\)-minimal surfaces and Lawson cones. J. Diff. Geom · Zbl 1394.53012
[19] De Giorgi, E., Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., 3, 3, 2-43 (1957) · Zbl 0084.31901
[20] Di Castro, A.; Kuusi, T.; Palatucci, G., Local behavior of fractional \(p\)-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire. V, 33, 5, 1279-1299 (2016) · Zbl 1355.35192 · doi:10.1016/j.anihpc.2015.04.003
[21] Dipierro, S.; Savin, O.; Valdinoci, E., Definition of fractional Laplacian for functions with polynomial growth, Rev. Mat. Iberoam., 35, 4, 1079-1122 (2019) · Zbl 1428.35660 · doi:10.4171/rmi/1079
[22] Dipierro, S., Savin, O., Valdinoci, E.: Graph properties for nonlocal minimal surfaces. Calc. Var. Partial Differ. Equ. 55(4), Paper No. 86, 25 pp (2016) · Zbl 1354.49088
[23] Dyda, B.; Kassman, M., Regularity estimates for elliptic nonlocal operators, Anal. PDE, 13, 2, 317-370 (2020) · Zbl 1437.35175 · doi:10.2140/apde.2020.13.317
[24] Fall, M.M.: Constant Nonlocal Mean Curvature surfaces and related problems. In: Proceedings of the International Congress of Mathematicians. 2018 Rio de Janeiro, vol. 1, pp. 21-30 10.9999/icm2018-v1-p21 · Zbl 1448.35005
[25] Fall, MM, Regularity estimates for nonlocal Schrödinger equation, Discrete Contin. Dyn. Syst., 39, 3, 1405-1456 (2019) · Zbl 1407.35209 · doi:10.3934/dcds.2019061
[26] Fall, MM; Weth, T., Monotonicity and nonexistence results for some fractional elliptic problems in the half space, Commun. Contemp. Math., 18, 1, 1550012 (2016) · Zbl 1334.35385 · doi:10.1142/S0219199715500121
[27] Felsinger, M.; Kassmann, M.; Voigt, P., The Dirichlet problem for nonlocal operators, Math. Z, 279, 3-4, 779-809 (2015) · Zbl 1317.47046 · doi:10.1007/s00209-014-1394-3
[28] Fernández-Real, X.; Ros-Oton, X., Regularity theory for general stable operators: parabolic equations, J. Funct. Anal., 272, 10, 4165-4221 (2017) · Zbl 1372.35058 · doi:10.1016/j.jfa.2017.02.015
[29] Fernández-Real, X.; Ros-Oton, X., Boundary regularity for the fractional heat equation, Rev. Acad. Cienc. Ser. A Math., 110, 49-64 (2016) · Zbl 1334.35386 · doi:10.1007/s13398-015-0218-6
[30] Figalli, A.; Valdinoci, E., Regularity and Bernstein-type results for nonlocal minimal surfaces, J. Reine Angew. Math., 729, 263-273 (2017) · Zbl 1380.49060
[31] Figalli, A.; Fusco, N.; Maggi, F.; Millot, V.; Morini, M., Isoperimetry and stability properties of balls with respect to nonlocal energies, Commun. Math. Phys., 336, 441-507 (2015) · Zbl 1312.49051 · doi:10.1007/s00220-014-2244-1
[32] Finn, R., New estimates for equations of minimal surface type, Arch. Ration. Mech. Anal., 14, 337-375 (1963) · Zbl 0133.04601 · doi:10.1007/BF00250712
[33] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer, Berlin, 2001. xiv+517pp · Zbl 1042.35002
[34] Gilboa, G.; Osher, S., Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7, 3, 1005-1028 (2008) · Zbl 1181.35006 · doi:10.1137/070698592
[35] Grubb, G., Fractional Laplacians on domains, a development of Hormander’s theory of \(\mu \)-transmission pseudodifferential operators, Adv. Math., 268, 478-528 (2015) · Zbl 1318.47064 · doi:10.1016/j.aim.2014.09.018
[36] Grubb, G., Local and nonlocal boundary conditions for \(\mu \)-transmission and fractional elliptic pseudodifferential operators, Anal. PDE, 7, 1649-1682 (2014) · Zbl 1317.35310 · doi:10.2140/apde.2014.7.1649
[37] Jin, T.; Xiong, J., Schauder estimates for nonlocal fully nonlinear equations, Ann. Inst. H. Poincaré Anal. Non-Linéaire, 33, 5, 1375-1407 (2016) · Zbl 1349.35386 · doi:10.1016/j.anihpc.2015.05.004
[38] Johnson, WP, The curious history of Faá di Bruno’s formula, Am. Math. Mon., 109, 217-227 (2002) · Zbl 1024.01010
[39] Kassmann, M., A priori estimates for integro-differential operators with measurable kernels, Calc. Var. Partial Differ. Equ., 34, 1-21 (2009) · Zbl 1158.35019 · doi:10.1007/s00526-008-0173-6
[40] Kassmann, M.; Mimica, A., Intrinsic scaling properties for nonlocal operators, J. Eur. Math. Soc. (JEMS), 19, 4, 983-1011 (2017) · Zbl 1371.35316 · doi:10.4171/JEMS/686
[41] Kassmann, M.; Rang, M.; Schwab, RW, Integro-differential equations with nonlinear directional dependence, Indiana Univ. Math. J., 63, 5, 1467-1498 (2014) · Zbl 1311.35047 · doi:10.1512/iumj.2014.63.5394
[42] Kassmann, M.; Schwab, RW, Regularity results for nonlocal parabolic equations, Riv. Math. Univ. Parma (N.S.), 5, 1, 183-212 (2014) · Zbl 1329.35095
[43] Kriventsov, D., \(C^{1,\alpha }\) interior regularity for nonlinear nonlocal elliptic equations with rough kernels, Commun. Partial Differ. Equ., 38, 12, 2081-2106 (2013) · Zbl 1281.35092 · doi:10.1080/03605302.2013.831990
[44] Kuusi, T.; Mingione, G.; Sire, Y., nonlocal equations with measure data, Commun. Math. Phys., 337, 3, 1317-1368 (2015) · Zbl 1323.45007 · doi:10.1007/s00220-015-2356-2
[45] Mingione, G., Gradient potential estimates, J. Eur. Math. Soc., 13, 459-486 (2011) · Zbl 1217.35077
[46] Mosconi, S., Optimal elliptic regularity: a comparison between local and nonlocal equations, Discrete Contin. Dyn. Syst., 11, 3, 547-559 (2018) · Zbl 1383.35044 · doi:10.3934/dcdss.2018030
[47] Mou, C.; Yi, Y., Interior regularity for regional fractional Laplacian, Commun. Math. Phys., 340, 233 (2015) · Zbl 1322.47045 · doi:10.1007/s00220-015-2445-2
[48] Ros-Oton, X.; Serra, J., Regularity theory for general stable operators, J. Differ. Equ., 260, 8675-8715 (2016) · Zbl 1346.35220 · doi:10.1016/j.jde.2016.02.033
[49] Ros-Oton, X.; Serra, J., Boundary regularity for fully nonlinear integro-differential equations, Duke Math. J., 165, 11, 2079-2154 (2016) · Zbl 1351.35245 · doi:10.1215/00127094-3476700
[50] Schwab, RW; Silvestre, L., Regularity for parabolic integro-differential equations with very irregular kernels, Anal. PDE, 9, 3, 727-772 (2016) · Zbl 1349.47079 · doi:10.2140/apde.2016.9.727
[51] Serra, J., \(C^{\sigma +\alpha }\) regularity for concave nonlocal fully nonlinear elliptic equations with rough kernels, Calc. Var. Partial Differ. Equ., 54, 3571-3601 (2015) · Zbl 1344.35042 · doi:10.1007/s00526-015-0914-2
[52] Serra, J., Regularity for fully nonlinear nonlocal parabolic equations with rough kernels, Calc. Var. Partial Differ. Equ., 54, 1, 615-629 (2015) · Zbl 1327.35170 · doi:10.1007/s00526-014-0798-6
[53] Silvestre, L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60, 67-112 (2007) · Zbl 1141.49035 · doi:10.1002/cpa.20153
[54] Silvestre, L., Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana Univ. Math. J., 55, 3, 1155-1174 (2006) · Zbl 1101.45004 · doi:10.1512/iumj.2006.55.2706
[55] Stein, E., Singular Integrals and Differentiability Properties of Functions (1970), Princeton: Princeton University Press, Princeton · Zbl 0207.13501
[56] Teixeira, EV, Sharp regularity for general Poisson equations with borderline sources, J. Math. Pures Appl. (9), 99, 2, 150-164 (2013) · Zbl 1263.35071 · doi:10.1016/j.matpur.2012.06.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.