×

A Nekhoroshev type theorem for nonlinear Schrödinger equation on the \(d\)-dimensional torus. (English) Zbl 07898654

Summary: In this paper, we study the long time dynamical behavior of the solutions for \(d\)-dimensional nonlinear Schrödinger equation on the torus \(\mathbb{T}^d\). Precisely, by using Birkhoff normal form technique, we prove the subexponential long time stability of solutions with small initial data in Gevrey space.

MSC:

37K55 Perturbations, KAM theory for infinite-dimensional Hamiltonian and Lagrangian systems
37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
35B35 Stability in context of PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)

References:

[1] D. Bambusi and N. N. Nekhoroshev. A property of exponential stability in nonlinear wave equations near the fundamental linear mode. Physica D: Nonlinear Phenomena, 122(1-4):73-104, 1998. · Zbl 0937.35010
[2] D. Bambusi. Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations. Mathematische Zeitschrift, 230(2):345-387, 1999. · Zbl 0928.35160
[3] D. Bambusi and B. Gébert. Birkhoff normal form for partial differential equations with tame modulus. Duke Mathematical Journal, 135(3):507-567, 2006. · Zbl 1110.37057
[4] D. Bambusi, J. M. Delort, B. Grébert and J. Szeftel. Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds. Communi-cations on Pure and Applied Mathematics, 60(11):1665-1690, 2007. · Zbl 1170.35481
[5] D. Bambusi, R. Feola and R. Montalto. Almost global existence for some Hamiltonian PDEs with small Cauchy data on general tori. arXiv preprint arXiv:2208.00413v1.
[6] G. Benettin, L. Galgani and A. Giorgilli. A proof of Nekhoroshev’s theorem for the stability times in nearly integrable hamiltonian systems. Celestial Mech, 37(1):1-25, 1985. · Zbl 0602.58022
[7] J. Bernier, E. Faou, and B. Grébert. Long time behavior of the solutions of NLW on the d-dimensional torus. Forum Math. Sigma, 8:Paper No. e12, 26, 2020. · Zbl 1441.35169
[8] J. Bernier, R. Feola, B. Grébert and F. Iandoli. Long-time existence for semi-linear beam equations on irrational Tori. J. Dynam. Differential Equations, 33(3):1363-1398, 2021. · Zbl 1482.35201
[9] J. Bourgain. Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations. Geometric and Functional Analysis, 6(2):201-230, 1996. · Zbl 0872.35007
[10] J. Bourgain. Remarks on stability and diffusion in high-dimensional Hamiltonian systems and partial differential equations. Ergodic Theory and Dynamical Systems, 24(5):1331-1357, 2004. · Zbl 1087.37056
[11] L. Biasco, J. E. Massetti and M. Procesi. An abstract Birkhoff normal form theorem and exponential type stability of the 1d NLS. Communications in Mathematical Physics, 375(3):2089-2153, 2020. · Zbl 1441.35217
[12] M. Berti and J. M. Delort. Almost global solutions of capillary-gravity water wave equations on the circle. Springer Italiana Publising, 2018. · Zbl 1409.35002
[13] G. M. Coclite, G. Devillanova and F. Maddalena. Waves in flexural beams with nonlinear adhesive interaction. Milan J. Math., 89(2):329-344, 2021. · Zbl 1481.35050
[14] H. Z. Cong, C. Y. Liu and P. Z. Wang. A Nekhoroshev type theorem for the nonlinear wave equation. Journal of Differential Equations, 269(4):3853-3889, 2020. · Zbl 1444.37058
[15] H. Z. Cong, L. F. Mi and P. Z. Wang. A Nekhoroshev type theorem for the derivative non-linear Schrödinger equation. Journal of Differential Equations, 268(2020):5207-5256, 2020. · Zbl 1437.37099
[16] H. Z. Cong, S. M. Li and X. Q. Wu. Long time stability result for d-dimensional nonlinear Schrödinger equation. Journal of Differential Equations, 94:174-208, 2024. · Zbl 1541.37084
[17] H. Z. Cong, L. F. Mi and Y. F. Shi. Super-exponential stability estimate for the nonlinear schrödinger equation. Journal of Functional Analysis, 283(12):109-682, 2022. · Zbl 1501.35369
[18] Q. L. Chen, H. Z. Cong, L. L. Meng and X. Q. Wu. Long time stability result for 1-dimensional nonlinear Schrödinger equation. Journal of Differential Equations, 315:90-121, 2022. · Zbl 1490.37091
[19] F. Derrab, A. Nabaji, P. Pongérard and C. Wagschal. Problème de Cauchy fuchsien dans les espaces de Gevrey. J. Math. Sci. Univ. Tokyo, 11(4):401-424, 2004. · Zbl 1064.35039
[20] J. M. Delort and R. Imekraz. Long-time existence for the semilinear Klein-Gordon equation on a compact boundary-less Riemannian manifold. Comm. Partial Differential Equations, 42(3):388-416, 2017. · Zbl 1365.37056
[21] E. Faou and B. Gébert. A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus. Analy. PDE, 6(6):1243-1262, 2013. · Zbl 1284.35067
[22] R. Feola and R. Montalto. Quadratic lifespan and growth of Sobolev norms for derivative Schrödinger equations on generic tori. Journal of Differential Equations, 312 (2022):276-316, 2022. · Zbl 1483.35209
[23] R. Feola and J. E. Massetti. Sub-exponential stability for the beam equation. Journal of Differential Equations, 356 (2023):188-242, 2023. · Zbl 1511.35341
[24] B. Gébert, R. Imekraz and É. Paturel. Normal forms for semilinear quantum harmonic oscillators. Communications in Mathematical Physics, 291(3):763-798, 2009. · Zbl 1185.81073
[25] R. Imekraz. Long time existence for the semi-linear beam equation on irrational tori of dimension two. Nonlinearity, 29(10):3067-3102, 2016. · Zbl 1353.37142
[26] A. D. Ionescu and F. Pusateri. Long-time existence for multi-dimensional periodic water waves. Geom. Funct. Anal., 29(3):811-870, 2019. · Zbl 1420.35243
[27] W. Lian, V. D. Rȃdulescu, R. Z. Xu, Y. B. Yang and N. Zhao. Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations. Adv. Calc. Var., DOI:10.1515/acv-2019-0039, 2019. · Zbl 1476.35048 · doi:10.1515/acv-2019-0039
[28] N. N. Nekhoroshev. An exponential estimate of the time of stability of nearly-integrable hamiltonian systems. Russian Math Surveys, 32(32):1-65, 1977. · Zbl 0389.70028
[29] J. Pöschel. Small divisors with spatial structure in infinite dimensional Hamiltonian sys-tems. Communications in Mathematical Physics, 127:351-39, 1990. · Zbl 0702.58065
[30] J. Pöschel. Nekhoroshev estimates for quasi-convex Hamiltonian systems (eng). Math Zeitschrift, 213(1):187-216, 1993. · Zbl 0857.70009
[31] J. Pöschel. On Nekhoroshev’s Estimate at an Elliptic Equilibrium. International Mathe-matics Research Notices, 4:203-205, 1999. · Zbl 0918.58026
[32] Y. T. Sun, S. M. Li and X. Q. Wu. Exponential and sub-exponential stability times for the derivative wave equation. Discrete and Continuous Dynamical Systems, 43(6):2186-2212, 2023. · Zbl 1519.37092
[33] C. Yang, V. D. Rȃdulescu, R. Z. Xu and M. Y. Zhang. Global well-posedness analysis for the nonlinear extensible beam equations in a class of modified Woinowsky-Krieger models. Advanced Nonlinear Studies, 22:436-468, 2022. · Zbl 1498.35363
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.