×

Long-time existence for the semilinear Klein-Gordon equation on a compact boundary-less Riemannian manifold. (English) Zbl 1365.37056

Authors’ abstract: We investigate the long-time existence of small and smooth solutions for the semilinear Klein-Gordon equation on a compact boundary-less Riemannian manifold. Without any spectral or geometric assumption, our first result improves the lifespan obtained by the local theory. The previous result is proved under a generic condition of the mass. As a by-product of the method, we examine the particular case, where the manifold is a multidimensional torus, and we give explicit examples of algebraic masses for which we can improve the local existence time. The analytic part of the proof relies on multilinear estimates of eigenfunctions and estimates of small divisors proved by J. M. Delort and J. Szeftel [Am. J. Math. 128, No. 5, 1187–1218 (2006; Zbl 1108.58023)]. The algebraic part of the proof relies on a multilinear version of the Roth theorem proved by W. M. Schmidt [Diophantine approximation. Lect. Notes Math. 785. Berlin, etc.: Springer-Verlag. (1980; Zbl 0421.10019)].

MSC:

37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
35P10 Completeness of eigenfunctions and eigenfunction expansions in context of PDEs
35P20 Asymptotic distributions of eigenvalues in context of PDEs
37K25 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with topology, geometry and differential geometry
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35Q53 KdV equations (Korteweg-de Vries equations)
Full Text: DOI

References:

[1] DOI: 10.1007/s00220-002-0774-4 · Zbl 1032.37051 · doi:10.1007/s00220-002-0774-4
[2] DOI: 10.1002/cpa.20181 · Zbl 1170.35481 · doi:10.1002/cpa.20181
[3] DOI: 10.1215/S0012-7094-06-13534-2 · Zbl 1110.37057 · doi:10.1215/S0012-7094-06-13534-2
[4] DOI: 10.1007/BF02247885 · Zbl 0872.35007 · doi:10.1007/BF02247885
[5] DOI: 10.1017/CBO9780511542886 · doi:10.1017/CBO9780511542886
[6] DOI: 10.1353/ajm.1998.0018 · Zbl 0902.35108 · doi:10.1353/ajm.1998.0018
[7] DOI: 10.1007/s11854-009-0007-2 · Zbl 1184.35211 · doi:10.1007/s11854-009-0007-2
[8] DOI: 10.1155/S1073792804133321 · Zbl 1079.35070 · doi:10.1155/S1073792804133321
[9] DOI: 10.1353/ajm.2006.0038 · Zbl 1108.58023 · doi:10.1353/ajm.2006.0038
[10] DOI: 10.1016/j.jde.2010.03.025 · Zbl 1200.35189 · doi:10.1016/j.jde.2010.03.025
[11] DOI: 10.1007/BF02391913 · Zbl 0164.13201 · doi:10.1007/BF02391913
[12] DOI: 10.1016/j.crma.2015.06.012 · Zbl 1330.58020 · doi:10.1016/j.crma.2015.06.012
[13] DOI: 10.1112/S0025579300000644 · Zbl 0064.28501 · doi:10.1112/S0025579300000644
[14] Safarov Y., The Asymptotic Distribution of Eigenvalues of Partial Differential Operators, Vol. 155 (1997)
[15] DOI: 10.1007/BF02392334 · Zbl 0205.06702 · doi:10.1007/BF02392334
[16] Schmidt W.M., Diophantine Approximation (1980)
[17] Sprindzuk V.G., Mahler s Problem in the Metric Theory of Numbers (1969)
[18] DOI: 10.1080/03605300903509112 · Zbl 1201.35145 · doi:10.1080/03605300903509112
[19] DOI: 10.1016/j.na.2015.10.008 · Zbl 1330.35260 · doi:10.1016/j.na.2015.10.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.