×

A Nekhoroshev type theorem for the derivative nonlinear Schrödinger equation. (English) Zbl 1437.37099

Summary: It is proved a Nekhoroshev type theorem for the derivative nonlinear Schrödinger equation in a Gevrey space. More precisely, we prove that if the norm of initial datum is equal to \(\varepsilon / 2\), then if \(\epsilon\) is small enough, the norm of the solution of the nonlinear Schrödinger equation above is bounded by \(2 \epsilon\) over a very long time interval of order \(e^{| \ln \varepsilon |^{1 + \beta}}\), where \(0 < \beta < \frac{ 1}{ 2}\) is arbitrary.

MSC:

37K55 Perturbations, KAM theory for infinite-dimensional Hamiltonian and Lagrangian systems
35Q55 NLS equations (nonlinear Schrödinger equations)
Full Text: DOI

References:

[1] Bambusi, D., Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations, Math. Z., 230, 345-387 (1999) · Zbl 0928.35160
[2] Bambusi, D.; Grébert, B., Birkhoff normal form for partial differential equations with tame modulus, Duke Math. J., 135, 507-567 (2006) · Zbl 1110.37057
[3] Bambusi, D.; Delort, J. M.; Grébert, B.; Szeftel, J., Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Commun. Pure Appl. Math., 60, 11, 1665-1690 (2007) · Zbl 1170.35481
[4] Baldi, P.; Berti, M.; Haus, E.; Montalto, R., Time quasi-periodic gravity water waves in finite depth, Invent. Math., 214, 2, 739-911 (2018) · Zbl 1445.76017
[5] Benettin, G.; Fröhlich, J.; Giorgilli, A., A Nekhoroshev-type theorem for Hamiltonian systems with infinite many degrees of freedom, Commun. Math. Phys., 119, 1, 95-108 (1988) · Zbl 0825.58011
[6] Feola, R.; Iandoli, F., Local well-posedness for quasi-linear NLS with large Cauchy data on the circle, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 36, 1, 119-164 (2019) · Zbl 1430.35207
[7] Bernier, J.; Faou, E.; Grébert, B., Rational normal forms and stability of small solutions to nonlinear Schrödinger equations (2018), arXiv preprint
[8] Berti, M.; Delort, J. M., Almost global existence of solutions for capillarity-gravity water waves equations with periodic spatial boundary conditions (2017), arXiv preprint
[9] Biasco, L.; Massetti, J.; Procesi, M., Exponential stability estimates for the 1D NLS (2018)
[10] Bourgain, J., Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal., 6, 201-230 (1996) · Zbl 0872.35007
[11] Bourgain, J., Remark on stability and diffusion in high-dimensional Hamiltonian systems and partial differential equations, Ergod. Theory Dyn. Syst., 24, 1331-1357 (2004) · Zbl 1087.37056
[12] Bourgain, J., On invariant tori of full dimension for 1D periodic NLS, J. Funct. Anal., 229, 1, 62-94 (2005) · Zbl 1088.35061
[13] Delort, J. M., Long-time Sobolev stability for small solutions of quasi-linear Klein-Gordon equations on the circle, Trans. Am. Math. Soc., 361, 8, 4299-4365 (2009) · Zbl 1179.35195
[14] Delort, J. M.; Szeftel, J., Long time existence for small data nonlinear Klein-Gordon equations on tori and spheres, Int. Math. Res. Not., 37, 1897-1966 (2004) · Zbl 1079.35070
[15] Fang, D.; Han, Z.; Zhang, Q., Almost global existence for the semi-linear Klein-Gordon equation on the circle, J. Differ. Equ., 262, 9, 4610-4634 (2017) · Zbl 1361.35113
[16] Fang, D.; Zhang, Q., Long-time existence for semi-linear Klein-Gordon equations on tori, J. Differ. Equ., 249, 1, 151-179 (2010) · Zbl 1200.35189
[17] Faou, E.; Grébert, B., A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus, Anal. PDE, 6, 1243-1262 (2013) · Zbl 1284.35067
[18] Feola, R.; Giuliani, F.; Procesi, M., Reducible KAM tori for Degasperis-Procesi equation (2018) · Zbl 1446.35171
[19] Feola, R.; Giuliani, F.; Pasquali, S., On the integrability of Degasperis-Procesi equation: control of the Sobolev norms and Birkhoff resonances, J. Differ. Equ., 266, 6, 3390-3437 (2019) · Zbl 1407.35060
[20] Grébert, B.; Imekraz, R.; Paturel, E., Normal forms for semilinear quantum harmonic oscillators, Commun. Math. Phys., 291, 3, 763-798 (2009) · Zbl 1185.81073
[21] Pasquali, S., A Nekhoroshev type theorem for the nonlinear Klein-Gordon equation with potential, Discrete Contin. Dyn. Syst., Ser. B, 23, 9, 3573-3594 (2018) · Zbl 1410.35154
[22] Yuan, X. P.; Zhang, J., Long time stability of Hamiltonian partial differential equations, SIAM J. Math. Anal., 46, 5, 3176-3222 (2014) · Zbl 1405.37085
[23] Yuan, X. P.; Zhang, J., Averaging principle for the KdV equation with a small initial value, Nonlinearity, 29, 603-656 (2016) · Zbl 1417.37258
[24] Zhang, Q., Lifespan estimates for the semi-linear Klein-Gordon equation with a quadratic potential in dimension one, J. Differ. Equ., 261, 12, 6982-6999 (2016) · Zbl 1356.35146
[25] Zhang, Q., Long-time existence for semi-linear Klein-Gordon equations with quadratic potential, Commun. Partial Differ. Equ., 35, 4, 630-668 (2010) · Zbl 1201.35145
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.