×

Topology optimization of finite strain elastoplastic materials using continuous adjoint method: formulation, implementation, and applications. (English) Zbl 07897591

Summary: This study presents a unified formulation of topology optimization for finite strain elastoplastic materials. As the primal problem to describe the elastoplastic behavior, we consider the standard \(J_2\)-plasticity model incorporated into Neo-Hookean elasticity within the finite strain framework. For the optimization problem, the objective function is set to accommodate both single and multiple objectives, the latter of which is realized by weighting each sub-function. The continuous adjoint method is employed to derive the sensitivity, which is a general form that accepts any kind of discretization method. Then, the governing equations of the adjoint problem are derived as a format that holds at any moment and at any location in the continuum body or on its boundary. Accordingly, the proposed formulation is independent of any requirements in numerical implementation. In addition, the reaction-diffusion equation is used to update the design variable in an optimizing process, for which the continuous distribution of the design variable as well as material properties are maintained. Two specific optimization problems, stiffness maximization and plastic hardening maximization, for two and three-dimensional structures are presented to demonstrate the ability of the proposed formulation.

MSC:

74-XX Mechanics of deformable solids
76-XX Fluid mechanics
Full Text: DOI

References:

[1] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 2, 197-224, 1988 · Zbl 0671.73065
[2] Deaton, J. D.; Grandhi, R. V., A survey of structural and multidisciplinary continuum topology optimization: post 2000, Struct. Multidiscip. Optim., 49, 1, 1-38, 2014
[3] Xia, L.; Fritzen, F.; Breitkopf, P., Evolutionary topology optimization of elastoplastic structures, Struct. Multidiscip. Optim., 55, 2, 569-581, 2017
[4] Zhu, J. H.; Zhang, W. H.; Xia, L., Topology optimization in aircraft and aerospace structures design, Arch. Comput. Methods Eng., 23, 4, 595-622, 2016 · Zbl 1360.74128
[5] Iga, A.; Nishiwaki, S.; Izui, K.; Yoshimura, M., Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection, Int. J. Heat Mass Transfer, 52, 11, 2721-2732, 2009 · Zbl 1167.80335
[6] Petrovic, M.; Nomura, T.; Yamada, T.; Izui, K.; Nishiwaki, S., Thermal performance optimization in electric vehicle power trains by locally orthotropic surface layer design, J. Mech. Des., 140, 11, Article 111413 pp., 2018
[7] Sukulthanasorn, N.; Hoshiba, H.; Nishiguchi, K.; Kurumatani, M.; Fleischhauer, R.; Ushijima, K.; Kaliske, M.; Terada, K.; Kato, J., Two-scale topology optimization for transient heat analysis in porous material considering the size effect of microstructure, Struct. Optim., 65, 7, 2022
[8] Yaji, K.; Yamada, T.; Kubo, S.; Izui, K.; Nishiwaki, S., A topology optimization method for a coupled thermal-fluid problem using level set boundary expressions, Int. J. Heat Mass Transfer, 81, C, 878-888, 2015
[9] Li, H.; Kondoh, T.; Jolivet, P.; Furuta, K.; Yamada, T.; Zhu, B.; Zhang, H.; Izui, K.; Nishiwaki, S., Optimum design and thermal modeling for 2d and 3d natural convection problems incorporating level set-based topology optimization with body-fitted mesh, Internat. J. Numer. Methods Engrg., 123, 9, 1954-1990, 2022 · Zbl 07833639
[10] Yaji, K.; Yamada, T.; Yoshino, M.; Matsumoto, T.; Izui, K.; Nishiwaki, S., Topology optimization in thermal-fluid flow using the Lattice Boltzmann method, J. Comput. Phys., 307, 355-377, 2016 · Zbl 1351.76256
[11] Lim, S.; Yamada, T.; Min, S.; Nishiwaki, S., Topology optimization of a magnetic actuator based on a level set and phase-field approach, IEEE Trans. Magn., 47, 5, 1318-1321, 2011
[12] Seok Choi, J.; Yamada, T.; Izui, K.; Nishiwaki, S.; Lim, H.; Yoo, J., Optimal shape design of flux barriers in IPM synchronous motors using the phase field method, COMPEL, 33, 3, 998-1016, 2014
[13] Lim, S.; Izui, K.; Nishiwaki, S.; Hong, J.-P.; Min, S., Magnetising fixture design for optimal magnetisation orientation of ring-type magnet in surface-mounted permanent magnet motor, IET Electr. Power Appl., 12, 9, 1344-1349, 2018
[14] Nomura, T.; Sato, K.; Taguchi, K.; Kashiwa, T.; Nishiwaki, S., Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique, Internat. J. Numer. Methods Engrg., 71, 11, 1261-1296, 2007 · Zbl 1194.78073
[15] Yamasaki, S.; Nomura, T.; Kawamoto, A.; Sato, K.; Nishiwaki, S., A level set-based topology optimization method targeting metallic waveguide design problems, Internat. J. Numer. Methods Engrg., 87, 9, 844-868, 2011 · Zbl 1242.78042
[16] Ohkado, M.; Nomura, T.; Yamasaki, S.; Kawamoto, A.; Nishiwaki, S., A level set-based topology optimization incorporating arbitrary Lagrangian Eulerian method for wavelength filter using extraordinary optical transmission, Struct. Multidiscip. Optim., 50, 3, 465-474, 2014
[17] Nishi, S.; Yamada, T.; Izui, K.; Nishiwaki, S.; Terada, K., Isogeometric topology optimization of anisotropic metamaterials for controlling high-frequency electromagnetic wave, Internat. J. Numer. Methods Engrg., 121, 6, 1218-1247, 2020 · Zbl 07843244
[18] Noguchi, Y.; Yamada, T.; Izui, K.; Nishiwaki, S., Topology optimization for hyperbolic acoustic metamaterials using a high-frequency homogenization method, Comput. Methods Appl. Mech. Engrg., 335, 419-471, 2018 · Zbl 1440.74307
[19] Yamamoto, T.; Maruyama, S.; Nishiwaki, S.; Yoshimura, M., Topology design of multi-material soundproof structures including poroelastic media to minimize sound pressure levels, Comput. Methods Appl. Mech. Engrg., 198, 17-20, 1439-1455, 2009 · Zbl 1227.74050
[20] Miyata, K.; Noguchi, Y.; Yamada, T.; Izui, K.; Nishiwaki, S., Optimum design of a multi-functional acoustic metasurface using topology optimization based on Zwicker’s loudness model, Comput. Methods Appl. Mech. Engrg., 331, 116-137, 2018 · Zbl 1439.74293
[21] Kato, J.; Yachi, D.; Kyoya, T.; Terada, K., Micro-macro concurrent topology optimization for nonlinear solids with a decoupling multiscale analysis, Internat. J. Numer. Methods Engrg., 113, 8, 1189-1213, 2018 · Zbl 07874749
[22] Nishi, S.; Terada, K.; Kato, J.; Nishiwaki, S.; Izui, K., Two-scale topology optimization for composite plates with in-plane periodicity, Internat. J. Numer. Methods Engrg., 113, 8, 1164-1188, 2018 · Zbl 07874748
[23] Maute, K.; Schwarz, S.; Ramm, E., Adaptive topology optimization of elastoplastic structures, Struct. Optim., 15, 2, 81-91, 1998
[24] Schwarz, S.; Maute, K.; Ramm, E., Topology and shape optimization for elastoplastic structural response, Comput. Methods Appl. Mech. Engrg., 190, 15-17, 2135-2155, 2001 · Zbl 1067.74052
[25] Huang, X.; Xie, Y. M.; Lu, G., Topology optimization of energy-absorbing structures, Int. J. Crashworthiness, 12, 6, 663-675, 2007
[26] Kato, J.; Hoshiba, H.; Takase, S.; Terada, K.; Kyoya, T., Analytical sensitivity in topology optimization for elastoplastic composites, Struct. Multidiscip. Optim., 52, 3, 507-526, 2015
[27] Nakshatrala, P. B.; Tortorelli, D. A., Topology optimization for effective energy propagation in rate-independent elastoplastic material systems, Comput. Methods Appl. Mech. Engrg., 295, 305-326, 2015 · Zbl 1423.74755
[28] Fritzen, F.; Xia, L.; Leuschner, M.; Breitkopf, P., Topology optimization of multiscale elastoviscoplastic structures, Internat. J. Numer. Methods Engrg., 106, 6, 430-453, 2016 · Zbl 1352.74239
[29] Alberdi, R.; Khandelwal, K., Topology optimization of pressure dependent elastoplastic energy absorbing structures with material damage constraints, Finite Elem. Anal. Des., 133, 42-61, 2017
[30] Li, L.; Zhang, G.; Khandelwal, K., Topology optimization of energy absorbing structures with maximum damage constraint, Internat. J. Numer. Methods Engrg., 112, 7, 737-775, 2017 · Zbl 07867230
[31] Li, L.; Khandelwal, K., Design of fracture resistant energy absorbing structures using elastoplastic topology optimization, Struct. Multidiscip. Optim., 56, 6, 1447-1475, 2017
[32] Li, L.; Khandelwal, K., Topology optimization of energy-dissipating plastic structures with shear modified Gurson-Tvergaard-Needleman model, J. Struct. Eng., 146, 11, 2020
[33] Amir, O., Stress-constrained continuum topology optimization: a new approach based on elasto-plasticity, Struct. Multidiscip. Optim., 55, 5, 1797-1818, 2017
[34] Zhang, G.; Li, L.; Khandelwal, K., Topology optimization of structures with anisotropic plastic materials using enhanced assumed strain elements, Struct. Multidiscip. Optim., 55, 6, 1965-1988, 2017
[35] Alberdi, R.; Khandelwal, K., Design of periodic elastoplastic energy dissipating microstructures, Struct. Multidiscip. Optim., 59, 2, 461-483, 2019
[36] Herfelt, M. A.; Poulsen, P. N.; Hoang, L. C., Strength-based topology optimisation of plastic isotropic von Mises materials, Struct. Multidiscip. Optim., 59, 3, 893-906, 2019
[37] Zhao, T.; Ramos, A. S.; Paulino, G. H., Material nonlinear topology optimization considering the von Mises criterion through an asymptotic approach: Max strain energy and max load factor formulations, Internat. J. Numer. Methods Engrg., 118, 13, 804-828, 2019 · Zbl 07865199
[38] Blachowski, B.; Tauzowski, P.; Lógó, J., Yield limited optimal topology design of elastoplastic structures, Struct. Multidiscip. Optim., 61, 5, 1953-1976, 2020
[39] Abueidda, D. W.; Kang, Z.; Koric, S.; James, K. A.; Jasiuk, I. M., Topology optimization for three-dimensional elastoplastic architected materials using a path-dependent adjoint method, Internat. J. Numer. Methods Engrg., 122, 8, 1889-1910, 2021 · Zbl 07863143
[40] Desai, J.; Allaire, G.; Jouve, F.; Mang, C., Topology optimization in quasi-static plasticity with hardening using a level-set method, Struct. Multidiscip. Optim., 64, 5, 3163-3191, 2021
[41] Russ, J. B.; Waisman, H., A novel elastoplastic topology optimization formulation for enhanced failure resistance via local ductile failure constraints and linear buckling analysis, Comput. Methods Appl. Mech. Engrg., 373, Article 113478 pp., 2021 · Zbl 1506.74294
[42] Kuci, E.; Jansen, M., Level set topology optimization of elasto-plastic materials with local stress constraints, Struct. Multidiscip. Optim., 65, 6, 170, 2022
[43] Noii, N.; Jahangiry, H. A.; Waisman, H., Evolutionary topology optimization of elastoplastic structures, Comput. Methods Appl. Mech. Engrg., 55, 2, 569-581, 2017
[44] Wallin, M.; Jönsson, V.; Wingren, E., Topology optimization based on finite strain plasticity, Struct. Multidiscip. Optim., 54, 4, 783-793, 2016
[45] Ivarsson, N.; Wallin, M.; Tortorelli, D., Topology optimization of finite strain viscoplastic systems under transient loads, Internat. J. Numer. Methods Engrg., 114, 1351-1367, 2018 · Zbl 07878367
[46] Ivarsson, N.; Wallin, M.; Amir, O.; Tortorelli, D. A., Plastic work constrained elastoplastic topology optimization, Internat. J. Numer. Methods Engrg., 122, 4354-4377, 2021 · Zbl 07865402
[47] Zhang, G.; Khandelwal, K., Gurson-Tvergaard-Needleman model guided fracture-resistant structural designs under finite deformations, Internat. J. Numer. Methods Engrg., 123, 3344-3388, 2022 · Zbl 07767909
[48] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 10, 1273-1311, 2010 · Zbl 1202.74014
[49] Brepols, T.; Wulfinghoff, S.; Reese, S., Gradient-extended two-surface damage-plasticity: Micromorphic formulation and numerical aspects, Int. J. Plast., 97, 64-106, 2017
[50] Han, J.; Matsubara, S.; Moriguchi, S.; Terada, K., Variational crack phase-field model for ductile fracture with elastic and plastic damage variables, Comput. Methods Appl. Mech. Engrg., 400, Article 115577 pp., 2022 · Zbl 1507.74385
[51] Han, J.; Matsubara, S.; Nishi, S.; Takada, K.; Muramatsu, M.; Omiya, M.; Ogawa, K.; Oide, K.; Kobayashi, T.; Murata, M.; Moriguchi, S.; Terada, K., Gradient damage model for ductile fracture introducing degradation of damage hardening modulus: implementation and experimental investigations, Int. J. Fract., 240, 2, 183-208, 2023
[52] de Souza Neto, E. A.; Perić, D.; Dutko, M.; Owen, D. R.J., Design of simple low order finite elements for large strain analysis of nearly incompressible solids, Int. J. Solids Struct., 33, 20-22, 3277-3296, 1996 · Zbl 0929.74102
[53] de Souza Neto, E. A.; Andrade Pires, F. M.; Owen, D. R.J., F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. Part I: Formulation and benchmarking, Internat. J. Numer. Methods Engrg., 62, 3, 353-383, 2005 · Zbl 1179.74159
[54] Bendsøe, M. P., Optimal shape design as a material distribution problem, Struct. Optim., 1, 4, 193-202, 1989
[55] Bendsøe, M. P.; Sigmund, O., Material interpolation schemes in topology optimization, Arch. Appl. Mech., 69, 9, 635-654, 1999 · Zbl 0957.74037
[56] Han, W.; Reddy, B. D., Plasticity, Interdisciplinary Applied Mathematics, 2013, Springer New York: Springer New York New York, NY · Zbl 1258.74002
[57] Ulloa, J.; Alessi, R.; Wambacq, J.; Degrande, G.; François, S., On the variational modeling of non-associative plasticity, Int. J. Solids Struct., 217-218, 272-296, 2021
[58] Simo, J., Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Comput. Methods Appl. Mech. Engrg., 99, 61-112, 1992 · Zbl 0764.73089
[59] Engelen, R. A.B.; Geers, M. G.; Baaijens, F. P.T., Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour, Int. J. Plast., 19, 4, 403-433, 2002 · Zbl 1090.74519
[60] Yaji, K.; Yamada, T.; Yoshino, M.; Matsumoto, T.; Izui, K.; Nishiwaki, S., Topology optimization in thermal-fluid flow using the Lattice Boltzmann method, J. Comput. Phys., 307, 355-377, 2016 · Zbl 1351.76256
[61] Ju, X.; Mahnken, R., Goal-oriented h-type adaptive finite elements for micromorphic elastoplasticity, Comput. Methods Appl. Mech. Engrg., 351, 297-329, 2019 · Zbl 1441.74249
[62] Ju, X.; Mahnken, R.; Xu, Y.; Liang, L., Goal-oriented error estimation and h-adaptive finite elements for hyperelastic micromorphic continua, Comput. Mech., 69, 847-863, 2022 · Zbl 07492697
[63] Furuta, K.; Sato, A.; Izui, K.; Nishiwaki, S., A level-set-based shape optimization method for thermoelectric materials, Internat. J. Numer. Methods Engrg., 123, 2338-2356, 2022 · Zbl 07833654
[64] Yodono, T.; Yaji, K.; Yamada, T.; Furuta, K.; Izui, K.; Nishiwaki, S., Topology optimization for the elastic field using the Lattice Boltzmann method, Comput. Math. Appl., 110, 123-134, 2022 · Zbl 1524.76315
[65] Otomori, M.; Yamada, T.; Izui, K.; Nishiwaki, S., Matlab code for a level set-based topology optimization method using a reaction diffusion equation, Struct. Multidiscip. Optim., 51, 5, 1159-1172, 2015
[66] Matsui, K.; Terada, K., Continuous approximation of material distribution for topology optimization, Internat. J. Numer. Methods Engrg., 59, 14, 1925-1944, 2004 · Zbl 1060.74583
[67] Geers, M. G.D.; de Borst, R.; Brekelmans, W. A.M.; Peerlings, R. H.J., Strain-based transient-gradient damage model for failure analyses, Comput. Methods Appl. Mech. Engrg., 160, 1, 133-153, 1998 · Zbl 0938.74006
[68] Grassl, P.; Jirásek, M., Damage-plastic model for concrete failure, Int. J. Solids Struct., 43, 22-23, 7166-7196, 2006 · Zbl 1120.74777
[69] Han, J.; Yin, B.; Kaliske, M.; Tarada, K., Incorporation of gradient-enhanced microplane damage model into isogeometric analysis, Eng. Comput. (Swansea, Wales), 38, 8, 3388-3415, 2021
[70] Han, J.; Matsubara, S.; Moriguchi, S.; Kaliske, M.; Terada, K., Crack phase-field model equipped with plastic driving force and degrading fracture toughness for ductile fracture simulation, Comput. Mech., 69, 1, 151-175, 2022 · Zbl 07492663
[71] Han, J., Paraview files for topology optimization of finite strain elastoplastic materials using continuous adjoint method: formulation, implementation, and applications, 2024, Mendeley Data
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.