×

Decoherence and entropy generation at one loop in the inflationary de Sitter spacetime for Yukawa interaction. (English) Zbl 07882436

Summary: The decoherence mechanism is believed to be possibly connected to the quantum to classical transition of the primordial cosmological perturbations in the early universe. In this paper, we extend our previous analysis on decoherence in a fermion and scalar quantum field theory coupled via the Yukawa interaction in the Minkowski spacetime, to the inflationary de Sitter background. We treat the scalar field as the system and the fermions as the environment, and both the fields are taken to be massless. We utilise a non-equilibrium effective field theory formalism, suitable for open quantum systems such as this. We assume that an observer measures only the Gaussian 2-point correlator for the scalar field, as the simplest realistic scenario. In order to compute the von Neumann entropy generated at late times as a measure of the decoherence, we construct the one loop renormalised Kadanoff-Baym equation, which is the equation of motion satisfied by the 2-point correlators in the closed time path Schwinger-Keldysh formalism. These equations account to the self energy corrections. Using this, we next construct the one loop corrected statistical propagator for the scalar, which is related to its phase space area, to compute the von Neumann entropy. We also compute the variation of the von Neumann entropy with respect to relevant parameters. We note the qualitative similarity between our findings and the scenario where both the system and the environment are scalars. Our result is also qualitatively similar to an earlier one found by using the influence functional technique for a massive Yukawa theory.
{© 2024 IOP Publishing Ltd and Sissa Medialab}

MSC:

83-XX Relativity and gravitational theory

References:

[1] Guth, Alan H.; Fang, Li-Zhi; Ruffini, R., The Inflationary Universe: a Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D, 23, 347-356, 1981 · Zbl 1371.83202 · doi:10.1103/PhysRevD.23.347
[2] Guth, Alan H.; Pi, S. Y., Fluctuations in the New Inflationary Universe, Phys. Rev. Lett., 49, 1110-1113, 1982 · doi:10.1103/PhysRevLett.49.1110
[3] S. Weinberg, Cosmology, Oxford University Press, Oxford, U.K. (2009).
[4] Spergel, D. N., First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters, Astrophys. J. Suppl., 148, 175-194, 2003 · doi:10.1086/377226
[5] Ade, P. A. R., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys., 594, A20, 2016 · doi:10.1051/0004-6361/201525898
[6] Aghanim, N., Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters, Astron. Astrophys., 594, A11, 2016 · doi:10.1051/0004-6361/201526926
[7] Aghanim, N., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, A6, 2020 · doi:10.1051/0004-6361/201833910
[8] Akrami, Y., Planck 2018 results. VII. Isotropy and Statistics of the CMB, Astron. Astrophys., 641, A7, 2020 · doi:10.1051/0004-6361/201935201
[9] Bhattacharya, Sourav; Joshi, Nitin, Non-perturbative analysis for a massless minimal quantum scalar with V() =^4/4! +^3/3! in the inflationary de Sitter spacetime, JCAP, 03, 2023 · Zbl 1522.83407 · doi:10.1088/1475-7516/2023/03/058
[10] Bhattacharya, Sourav, Massless minimal quantum scalar field with an asymmetric self interaction in de Sitter spacetime, JCAP, 09, 2022 · Zbl 1511.83044 · doi:10.1088/1475-7516/2022/09/041
[11] Friedrich, Pavel; Prokopec, Tomislav, Entropy production in inflation from spectator loops, Phys. Rev. D, 100, 2019 · doi:10.1103/PhysRevD.100.083505
[12] Onemli, V. K.; Woodard, R. P., Superacceleration from massless, minimally coupled phi**4, Class. Quant. Grav., 19, 4607, 2002 · Zbl 1023.83025 · doi:10.1088/0264-9381/19/17/311
[13] Tsamis, N. C.; Woodard, R. P., Stochastic quantum gravitational inflation, Nucl. Phys. B, 724, 295-328, 2005 · Zbl 1178.83026 · doi:10.1016/j.nuclphysb.2005.06.031
[14] Cabrer, J. A.; Espriu, D., Secular effects on inflation from one-loop quantum gravity, Phys. Lett. B, 663, 361-366, 2008 · doi:10.1016/j.physletb.2008.04.047
[15] Glavan, D.; Miao, S. P.; Prokopec, T.; Woodard, R. P., Large logarithms from quantum gravitational corrections to a massless, minimally coupled scalar on de Sitter, JHEP, 03, 088, 2022 · Zbl 1522.83068 · doi:10.1007/JHEP03(2022)088
[16] Akhmedov, E. T.; Popov, F. K.; Slepukhin, V. M., Infrared dynamics of the massive 4 theory on de Sitter space, Phys. Rev. D, 88, 2013 · doi:10.1103/PhysRevD.88.024021
[17] Akhmedov, E. T.; Popov, F. K., A few more comments on secularly growing loop corrections in strong electric fields, JHEP, 09, 085, 2015 · doi:10.1007/JHEP09(2015)085
[18] Akhmedov, Emil T.; Godazgar, Hadi; Popov, Fedor K., Hawking radiation and secularly growing loop corrections, Phys. Rev. D, 93, 2016 · doi:10.1103/PhysRevD.93.024029
[19] Akhmedov, E. T.; Moschella, U.; Popov, F. K., Characters of different secular effects in various patches of de Sitter space, Phys. Rev. D, 99, 2019 · doi:10.1103/PhysRevD.99.086009
[20] Kaplanek, Greg; Burgess, C. P., Qubits on the Horizon: decoherence and Thermalization near Black Holes, JHEP, 01, 098, 2021 · doi:10.1007/JHEP01(2021)098
[21] Hu, Bei-Lok, Infrared Behavior of Quantum Fields in Inflationary Cosmology — Issues and Approaches: an overview, 2018
[22] E. Calzetta and B.L. Hu, Nonequilibrium quantum field theory, Cambridge University Press, Cambridge, U.K. (2008). · Zbl 1149.81001
[23] Calzetta, Esteban; Hu, B. L., Correlations, decoherence, dissipation, and noise in quantum field theory, 1995 · Zbl 0872.60095
[24] Asprea, L.; Gasbarri, G.; Bassi, A., Gravitational decoherence: a general nonrelativistic model, Phys. Rev. D, 103, 2021 · doi:10.1103/PhysRevD.103.104041
[25] Asprea, Lorenzo; Bassi, Angelo; Ulbricht, Hendrik; Gasbarri, Giulio, Gravitational Decoherence and the Possibility of Its Interferometric Detection, Phys. Rev. Lett., 126, 2021 · doi:10.1103/PhysRevLett.126.200403
[26] Onoe, Sho; Su, Daiqin; Ralph, Timothy, Particle production and apparent decoherence due to an accelerated time-delay, Phys. Rev. D, 98, 2018 · doi:10.1103/PhysRevD.98.036011
[27] Allali, Itamar; Hertzberg, Mark P., Gravitational Decoherence of Dark Matter, JCAP, 07, 2020 · Zbl 1493.83010 · doi:10.1088/1475-7516/2020/07/056
[28] Ashtekar, Abhay; Corichi, Alejandro; Kesavan, Aruna, Emergence of classical behavior in the early universe, Phys. Rev. D, 102, 2020 · doi:10.1103/PhysRevD.102.023512
[29] Rotondo, Marcello; Nambu, Yasusada, The decoherence and interference of cosmological arrows of time for a de Sitter universe with quantum fluctuations, Universe, 4, 71, 2018 · doi:10.3390/universe4060071
[30] Campo, David; Parentani, Renaud, Decoherence and entropy of primordial fluctuations. I: formalism and interpretation, Phys. Rev. D, 78, 2008 · doi:10.1103/PhysRevD.78.065044
[31] Campo, David; Parentani, Renaud, Decoherence and entropy of primordial fluctuations II. The entropy budget, Phys. Rev. D, 78, 2008 · doi:10.1103/PhysRevD.78.065045
[32] Calzetta, E.; Hu, B. L., Quantum fluctuations, decoherence of the mean field, and structure formation in the early universe, Phys. Rev. D, 52, 6770-6788, 1995 · doi:10.1103/PhysRevD.52.6770
[33] Brahma, Suddhasattwa; Alaryani, Omar; Brandenberger, Robert, Entanglement entropy of cosmological perturbations, Phys. Rev. D, 102, 2020 · doi:10.1103/PhysRevD.102.043529
[34] Janssen, Tomas; Prokopec, Tomislav, A Graviton propagator for inflation, Class. Quant. Grav., 25, 2008 · Zbl 1136.83040 · doi:10.1088/0264-9381/25/5/055007
[35] Markkanen, Tommi, Decoherence Can Relax Cosmic Acceleration: an Example, JCAP, 09, 2017 · Zbl 1515.83400 · doi:10.1088/1475-7516/2017/09/022
[36] Hu, B. L., Quantum statistical processes in the early universe, Vistas Astron., 37, 391, 1993 · doi:10.1016/0083-6656(93)90066-S
[37] Hu, B. L., Statistical mechanics and quantum cosmology, 1990
[38] Brandenberger, Robert H.; Mukhanov, Viatcheslav F.; Prokopec, T., Entropy of a classical stochastic field and cosmological perturbations, Phys. Rev. Lett., 69, 3606-3609, 1992 · doi:10.1103/PhysRevLett.69.3606
[39] Polarski, David; Starobinsky, Alexei A., Semiclassicality and decoherence of cosmological perturbations, Class. Quant. Grav., 13, 377-392, 1996 · Zbl 0849.53077 · doi:10.1088/0264-9381/13/3/006
[40] Lesgourgues, J.; Polarski, David; Starobinsky, Alexei A., Quantum to classical transition of cosmological perturbations for nonvacuum initial states, Nucl. Phys. B, 497, 479-510, 1997 · Zbl 0935.83011 · doi:10.1016/S0550-3213(97)00224-1
[41] Brandenberger, Robert H.; Laflamme, Raymond; Mijic, Milan, Classical Perturbations From Decoherence of Quantum Fluctuations in the Inflationary Universe, Mod. Phys. Lett. A, 5, 2311-2318, 1990 · doi:10.1142/S0217732390002651
[42] Kiefer, Claus; Polarski, David; Starobinsky, Alexei A., Quantum to classical transition for fluctuations in the early universe, Int. J. Mod. Phys. D, 7, 455-462, 1998 · Zbl 0939.83024 · doi:10.1142/S0218271898000292
[43] Prokopec, Tomislav; Rigopoulos, Gerasimos I., Decoherence from Isocurvature perturbations in Inflation, JCAP, 11, 2007 · doi:10.1088/1475-7516/2007/11/029
[44] Zurek, Wojciech Hubert, Decoherence, einselection, and the quantum origins of the classical, Rev. Mod. Phys., 75, 715-775, 2003 · Zbl 1205.81031 · doi:10.1103/RevModPhys.75.715
[45] Weenink, Jan; Prokopec, Tomislav, On decoherence of cosmological perturbations and stochastic inflation, 2011
[46] Berges, Juergen; Bracco, Mirian; Chiapparini, Marcelo; Ferreira, Erasmo; Kodama, Takeshi, Introduction to nonequilibrium quantum field theory, AIP Conf. Proc., 739, 3-62, 2004 · doi:10.1063/1.1843591
[47] D. Glavan and T. Prokopec, A pedestrian introduction to non-equilibrium QFT, https://webspace.science.uu.nl/ proko101/LecturenotesNonEquilQFT.pdf.
[48] Łuczka, J., Non-Markovian stochastic processes: colored noise, Chaos, 15, 2005 · Zbl 1080.82018 · doi:10.1063/1.1860471
[49] Boyanovsky, Daniel, Information loss in effective field theory: entanglement and thermal entropies, Phys. Rev. D, 97, 2018 · doi:10.1103/PhysRevD.97.065008
[50] Lombardo, Fernando C.; Elze, Hans-Thomas, Influence functional approach to decoherence during inflation, Braz. J. Phys., 35, 391-396, 2005 · doi:10.1590/S0103-97332005000300005
[51] Boyanovsky, D., Effective field theory during inflation. II. Stochastic dynamics and power spectrum suppression, Phys. Rev. D, 93, 2016 · doi:10.1103/PhysRevD.93.043501
[52] Bhattacharya, Sourav; Gaur, Himanshu; Joshi, Nitin, Some measures for fermionic entanglement in the cosmological de Sitter spacetime, Phys. Rev. D, 102, 2020 · doi:10.1103/PhysRevD.102.045017
[53] Bhattacharya, Sourav; Joshi, Nitin, Entanglement degradation in multi-event horizon spacetimes, Phys. Rev. D, 105, 2022 · doi:10.1103/PhysRevD.105.065007
[54] Marquardt, FlorianPüttmann, AnnettIntroduction to dissipation and decoherence in quantum systems2008
[55] Deffner, Sebastian, Quantum entropy production in phase space, 2013 · doi:10.1209/0295-5075/103/30001
[56] Giraud, Alexandre; Serreau, Julien, Decoherence and thermalization of a pure quantum state in quantum field theory, Phys. Rev. Lett., 104, 2010 · doi:10.1103/PhysRevLett.104.230405
[57] Berges, Juergen; Borsanyi, Szabolcs; Serreau, Julien, Thermalization of fermionic quantum fields, Nucl. Phys. B, 660, 51-80, 2003 · Zbl 1050.82531 · doi:10.1016/S0550-3213(03)00261-X
[58] Prokopec, Tomislav; Schmidt, Michael G.; Weenink, Jan; Schmidt, Michael G., The Gaussian entropy of fermionic systems, Annals Phys., 327, 3138-3169, 2012 · Zbl 1259.82085 · doi:10.1016/j.aop.2012.09.003
[59] Shaisultanov, R. Zh., Back reaction in scalar QCD, Langevin equation and decoherence functional, 1995
[60] Hollowood, T. J.; McDonald, J. I., Decoherence, discord and the quantum master equation for cosmological perturbations, Phys. Rev. D, 95, 2017 · doi:10.1103/PhysRevD.95.103521
[61] Anastopoulos, C.; Hu, B. L., A Master Equation for Gravitational Decoherence: probing the Textures of Spacetime, Class. Quant. Grav., 30, 2013 · Zbl 1273.83006 · doi:10.1088/0264-9381/30/16/165007
[62] Chou, Chung-Hsien; Yu, Ting; Hu, B. L., Exact master equation and quantum decoherence of two coupled harmonic oscillators in a general environment, Phys. Rev. E, 77, 2008 · doi:10.1103/PhysRevE.77.011112
[63] Koksma, Jurjen F.; Prokopec, Tomislav; Schmidt, Michael G., Entropy and Correlators in Quantum Field Theory, Annals Phys., 325, 1277-1303, 2010 · Zbl 1193.81064 · doi:10.1016/j.aop.2010.02.016
[64] Koksma, Jurjen F.; Prokopec, Tomislav; Schmidt, Michael G., Decoherence in an Interacting Quantum Field Theory: the Vacuum Case, Phys. Rev. D, 81, 2010 · doi:10.1103/PhysRevD.81.065030
[65] Koksma, Jurjen F.; Prokopec, Tomislav; Schmidt, Michael G., Decoherence in an Interacting Quantum Field Theory: thermal Case, Phys. Rev. D, 83, 2011 · doi:10.1103/PhysRevD.83.085011
[66] Bhattacharya, Sourav; Joshi, Nitin; Kaushal, Shagun, Decoherence and entropy generation in an open quantum scalar-fermion system with Yukawa interaction, Eur. Phys. J. C, 83, 208, 2023 · doi:10.1140/epjc/s10052-023-11357-6
[67] Lombardo, Fernando C.; Lopez Nacir, Diana, Decoherence during inflation: the Generation of classical inhomogeneities, Phys. Rev. D, 72, 2005 · doi:10.1103/PhysRevD.72.063506
[68] Martineau, Patrick, On the decoherence of primordial fluctuations during inflation, Class. Quant. Grav., 24, 5817-5834, 2007 · Zbl 1130.83332 · doi:10.1088/0264-9381/24/23/006
[69] Nelson, Elliot, Quantum Decoherence During Inflation from Gravitational Nonlinearities, JCAP, 03, 2016 · doi:10.1088/1475-7516/2016/03/022
[70] Nelson, Elliot; Riedel, C. Jess, Classical Entanglement Structure in the Wavefunction of Inflationary Fluctuations, Int. J. Mod. Phys. D, 26, 2017 · doi:10.1142/S0218271817430064
[71] Calzetta, E.; Hu, B. L., Quantum fluctuations, decoherence of the mean field, and structure formation in the early universe, Phys. Rev. D, 52, 6770-6788, 1995 · doi:10.1103/PhysRevD.52.6770
[72] Ye, Gen; Piao, Yun-Song, Quantum decoherence of primordial perturbations through nonlinear scaler-tensor interaction, 2018
[73] Rostami, Abasalt; Firouzjaee, Javad T., Quantum decoherence from entanglement during inflation, 2017
[74] Liu, Junyu; Sou, Chon-Man; Wang, Yi, Cosmic Decoherence: massive Fields, JHEP, 10, 072, 2016 · doi:10.1007/JHEP10(2016)072
[75] Martin, Jerome; Vennin, Vincent, Observational constraints on quantum decoherence during inflation, JCAP, 05, 2018 · Zbl 1536.83191 · doi:10.1088/1475-7516/2018/05/063
[76] Martin, Jérôme; Vennin, Vincent, Non Gaussianities from Quantum Decoherence during Inflation, JCAP, 06, 2018 · Zbl 1527.83154 · doi:10.1088/1475-7516/2018/06/037
[77] Duffy, L. D.; Woodard, R. P., Yukawa scalar self-mass on a conformally flat background, Phys. Rev. D, 72, 2005 · doi:10.1103/PhysRevD.72.024023
[78] Prokopec, T.; Woodard, Richard P., Production of massless fermions during inflation, JHEP, 10, 059, 2003 · doi:10.1088/1126-6708/2003/10/059
[79] Miao, Shun-Pei; Woodard, R. P., Leading log solution for inflationary Yukawa, Phys. Rev. D, 74, 2006 · doi:10.1103/PhysRevD.74.044019
[80] Toms, David J., Gauged Yukawa model in curved spacetime, Phys. Rev. D, 98, 2018 · doi:10.1103/PhysRevD.98.025015
[81] Toms, David J., Effective action for the Yukawa model in curved spacetime, JHEP, 05, 139, 2018 · Zbl 1391.81136 · doi:10.1007/JHEP05(2018)139
[82] Nüßeler, Alexander; Dhand, Ish; Huelga, Susana F.; Plenio, Martin B., Efficient simulation of open quantum systems coupled to a fermionic bath, Phys. Rev. B, 101, 2020 · doi:10.1103/PhysRevB.101.155134
[83] Enqvist, Kari; Hogdahl, Janne, Scalar condensate decay in a fermionic heat bath in the early universe, JCAP, 09, 2004 · doi:10.1088/1475-7516/2004/09/013
[84] Karmakar, Anirban; Gangopadhyay, Gautam, Decoherence without dissipation due to fermionic bath, 85, 2012 · Zbl 1247.81198 · doi:10.1088/0031-8949/85/04/045008
[85] Lankinen, Juho; Malmi, Joonas; Vilja, Iiro, Fermionic decay of a massive scalar in the early Universe, Eur. Phys. J. C, 80, 502, 2020 · doi:10.1140/epjc/s10052-020-8074-8
[86] Schaub, Vladimir, Spinors in (Anti-)de Sitter Space, JHEP, 09, 142, 2023 · Zbl 07754721 · doi:10.1007/JHEP09(2023)142
[87] Pethybridge, Ben; Schaub, Vladimir, Tensors and spinors in de Sitter space, JHEP, 06, 123, 2022 · Zbl 1522.83255 · doi:10.1007/JHEP06(2022)123
[88] Boyanovsky, Daniel, Imprint of entanglement entropy in the power spectrum of inflationary fluctuations, Phys. Rev. D, 98, 2018 · doi:10.1103/PhysRevD.98.023515
[89] Cornwall, John M.; Jackiw, R.; Tomboulis, E., Effective Action for Composite Operators, Phys. Rev. D, 10, 2428-2445, 1974 · Zbl 1110.81324 · doi:10.1103/PhysRevD.10.2428
[90] Schwinger, Julian S., Brownian motion of a quantum oscillator, J. Math. Phys., 2, 407-432, 1961 · Zbl 0098.43503 · doi:10.1063/1.1703727
[91] Keldysh, L. V., Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz., 47, 1515-1527, 1964
[92] I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, Academic Press, New York, NY, U.S.A. (1965).
[93] M. Abramowitz and I. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards, U.S.A. (1964). · Zbl 0171.38503
[94] Prokopec, Tomislav; Tsamis, Nicholas C.; Woodard, Richard P., Two loop stress-energy tensor for inflationary scalar electrodynamics, Phys. Rev. D, 78, 2008 · doi:10.1103/PhysRevD.78.043523
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.