×

Gravitational decoherence of dark matter. (English) Zbl 1493.83010


MSC:

83C56 Dark matter and dark energy
81V25 Other elementary particle theory in quantum theory
83C45 Quantization of the gravitational field
83B05 Observational and experimental questions in relativity and gravitational theory
81S22 Open systems, reduced dynamics, master equations, decoherence
81V10 Electromagnetic interaction; quantum electrodynamics
81P40 Quantum coherence, entanglement, quantum correlations
81V60 Mono-, di- and multipole moments (EM and other), gyromagnetic relations
81U05 \(2\)-body potential quantum scattering theory

References:

[1] H.D. Zeh, 1970 On the interpretation of measurement in quantum theory, https://doi.org/10.1007/BF00708656 Found. Phys.1 69 · doi:10.1007/BF00708656
[2] W.H. Zurek, 1981 Pointer basis of quantum apparatus: into what mixture does the wave packet collapse?, https://doi.org/10.1103/PhysRevD.24.1516 Phys. Rev. D24 1516 · doi:10.1103/PhysRevD.24.1516
[3] W.H. Zurek, 1982 Environment induced superselection rules, https://doi.org/10.1103/PhysRevD.26.1862 Phys. Rev. D26 1862 · doi:10.1103/PhysRevD.26.1862
[4] A. Bassi, A. Großardt and H. Ulbricht, 2017 Gravitational decoherence, https://doi.org/10.1088/1361-6382/aa864f Class. Quant. Grav.34 193002 [1706.05677] · Zbl 1373.83001 · doi:10.1088/1361-6382/aa864f
[5] A. Belenchia, R.M. Wald, F. Giacomini, E. Castro-Ruiz, v.C. Brukner and M. Aspelmeyer, 2018 Quantum superposition of massive objects and the quantization of gravity, https://doi.org/10.1103/PhysRevD.98.126009 Phys. Rev. D98 126009 [1807.07015] · doi:10.1103/PhysRevD.98.126009
[6] L. Asprea, G. Gasbarri and A. Bassi, Gravitational decoherence: a general non relativistic model, [1905.01121]
[7] C. Anastopoulos and B.L. Hu, 2013 A master equation for gravitational decoherence: probing the textures of spacetime, https://doi.org/10.1088/0264-9381/30/16/165007 Class. Quant. Grav.30 165007 [1305.5231] · Zbl 1273.83006 · doi:10.1088/0264-9381/30/16/165007
[8] M.P. Blencowe, 2013 Effective field theory approach to gravitationally induced decoherence, https://doi.org/10.1103/PhysRevLett.111.021302 Phys. Rev. Lett.111 021302 [1211.4751] · doi:10.1103/PhysRevLett.111.021302
[9] H.-P. Breuer, E. Goklu and C. Lammerzahl, 2009 Metric fluctuations and decoherence, https://doi.org/10.1088/0264-9381/26/10/105012 Class. Quant. Grav.26 105012 [0812.0420] · Zbl 1163.83340 · doi:10.1088/0264-9381/26/10/105012
[10] A. Shariati, M. Khorrami and F. Loran, 2016 Decoherence in quantum systems in a static gravitational field, https://doi.org/10.1209/0295-5075/115/50003 EPL115 50003 [1610.02494] · doi:10.1209/0295-5075/115/50003
[11] C. DeLisle, J. Wilson-Gerow and P. Stamp, Gravitational decoherence, asymptotic quantization and entanglement measures, [1905.05333]
[12] P.J. Orlando, F.A. Pollock and K. Modi, 2016 How does interference fall?, in https://doi.org/10.1007/978-3-319-53412-119 Lectures on general quantum correlations and their applications, pp. 421-451 [1610.02141] · Zbl 1370.81030 · doi:10.1007/978-3-319-53412-119
[13] B.H. Pang, Y. Chen and F.Y. Khalili, 2016 Universal decoherence under gravity: a perspective through the equivalence principle, https://doi.org/10.1103/PhysRevLett.117.090401 Phys. Rev. Lett.117 090401 [1603.01984] · doi:10.1103/PhysRevLett.117.090401
[14] T. Oniga and C.H.T. Wang, 2016 Quantum gravitational decoherence of light and matter, https://doi.org/10.1103/PhysRevD.93.044027 Phys. Rev. D93 044027 [1511.06678] · doi:10.1103/PhysRevD.93.044027
[15] Y. Bonder, E. Okon and D. Sudarsky, 2015 Can gravity account for the emergence of classicality?, https://doi.org/10.1103/PhysRevD.92.124050 Phys. Rev. D92 124050 [1509.04363] · doi:10.1103/PhysRevD.92.124050
[16] L. Diósi, 2017 Centre of mass decoherence due to time dilation: paradoxical frame-dependence, https://doi.org/10.1088/1742-6596/880/1/012020 J. Phys. Conf. Ser.880 012020 [1507.05828] · doi:10.1088/1742-6596/880/1/012020
[17] S. Colin, T. Durt and R. Willox, 2014 Can quantum systems succumb to their own (gravitational) attraction?, https://doi.org/10.1088/0264-9381/31/24/245003 Class. Quant. Grav.31 245003 [1403.2982] · Zbl 1316.81090 · doi:10.1088/0264-9381/31/24/245003
[18] B.L. Hu, 2014 Gravitational decoherence, alternative quantum theories and semiclassical gravity, https://doi.org/10.1088/1742-6596/504/1/012021 J. Phys. Conf. Ser.504 012021 [1402.6584] · doi:10.1088/1742-6596/504/1/012021
[19] I. Pikovski, M. Zych, F. Costa and C. Brukner, 2015 Universal decoherence due to gravitational time dilation, https://doi.org/10.1038/nphys3366 Nature Phys.11 668 [1311.1095] · doi:10.1038/nphys3366
[20] D. Polarski and A.A. Starobinsky, 1996 Semiclassicality and decoherence of cosmological perturbations, https://doi.org/10.1088/0264-9381/13/3/006 Class. Quant. Grav.13 377 [gr-qc/9504030] · Zbl 0849.53077 · doi:10.1088/0264-9381/13/3/006
[21] J.J. Halliwell, 1989 Decoherence in Quantum Cosmology, https://doi.org/10.1103/PhysRevD.39.2912 Phys. Rev. D39 2912 · doi:10.1103/PhysRevD.39.2912
[22] C. Kiefer, D. Polarski and A.A. Starobinsky, 1998 Quantum to classical transition for fluctuations in the early universe, https://doi.org/10.1142/S0218271898000292 Int. J. Mod. Phys. D7 455 [gr-qc/9802003] · Zbl 0939.83024 · doi:10.1142/S0218271898000292
[23] T. Padmanabhan, 1989 Decoherence in the density matrix describing quantum three geometries and the emergence of classical space-time, https://doi.org/10.1103/PhysRevD.39.2924 Phys. Rev. D39 2924 · doi:10.1103/PhysRevD.39.2924
[24] D. Kafri, J.M. Taylor and G.J. Milburn, 2014 A classical channel model for gravitational decoherence, https://doi.org/10.1088/1367-2630/16/6/065020 New J. Phys.16 065020 [1401.0946] · Zbl 1451.81296 · doi:10.1088/1367-2630/16/6/065020
[25] E. Nelson, 2016 Quantum decoherence during inflation from gravitational nonlinearities J. Cosmol. Astropart. Phys.2016 03 022 [1601.03734]
[26] C. Anastopoulos and B.L. Hu, 2014 Problems with the Newton-Schrödinger equations, https://doi.org/10.1088/1367-2630/16/8/085007 New J. Phys.16 085007 [1403.4921] · Zbl 1451.81380 · doi:10.1088/1367-2630/16/8/085007
[27] C. H.-T. Wang, R. Bingham and J. Mendonca, 2006 Quantum gravitational decoherence of matter waves, https://doi.org/10.1088/0264-9381/23/18/L01 Class. Quant. Grav.23 L59 [gr-qc/0603112] · Zbl 1117.83334 · doi:10.1088/0264-9381/23/18/L01
[28] P. Kok and U. Yurtsever, 2003 Gravitational decoherence, https://doi.org/10.1103/PhysRevD.68.085006 Phys. Rev. D68 085006 [gr-qc/0306084] · doi:10.1103/PhysRevD.68.085006
[29] I. Pikovski, M. Zych, F. Costa and C. Brukner, 2017 Time dilation in quantum systems and decoherence, https://doi.org/10.1088/1367-2630/aa5d92 New J. Phys.19 025011 [1508.03296] · Zbl 1512.81053 · doi:10.1088/1367-2630/aa5d92
[30] C. Kiefer, Origin of classical structure from inflation, [astro-ph/0006252]
[31] N.E. Mavromatos, A. Meregaglia, A. Rubbia, A. Sakharov and S. Sarkar, 2008 Quantum-gravity decoherence effects in neutrino oscillations: expected constraints from CNGS and J-PARC, https://doi.org/10.1103/PhysRevD.77.053014 Phys. Rev. D77 053014 [0801.0872] · doi:10.1103/PhysRevD.77.053014
[32] M. Tegmark, 2012 How unitary cosmology generalizes thermodynamics and solves the inflationary entropy problem, https://doi.org/10.1103/PhysRevD.85.123517 Phys. Rev. D85 123517 [1108.3080] · doi:10.1103/PhysRevD.85.123517
[33] C. Anastopoulos, 1996 Quantum theory of nonrelativistic particles interacting with gravity, https://doi.org/10.1103/PhysRevD.54.1600 Phys. Rev. D54 1600 [gr-qc/9511004] · doi:10.1103/PhysRevD.54.1600
[34] S. Colin, T. Durt and R. Willox, 2016 Crucial tests of macrorealist and semiclassical gravity models with freely falling mesoscopic nanospheres, https://doi.org/10.1103/PhysRevA.93.062102 Phys. Rev. A93 062102 [1402.5653] · doi:10.1103/PhysRevA.93.062102
[35] C. Kiefer and D. Polarski, 2009 Why do cosmological perturbations look classical to us?, https://doi.org/10.1166/asl.2009.1023 Adv. Sci. Lett.2 164 [0810.0087] · doi:10.1166/asl.2009.1023
[36] R.H. Brandenberger, R. Laflamme and M. Mijic, 1990 Classical perturbations from decoherence of quantum fluctuations in the inflationary universe, https://doi.org/10.1142/S0217732390002651 Mod. Phys. Lett. A5 2311 · doi:10.1142/S0217732390002651
[37] A. Albrecht and D. Phillips, 2014 Origin of probabilities and their application to the multiverse, https://doi.org/10.1103/PhysRevD.90.123514 Phys. Rev. D90 123514 [1212.0953] · doi:10.1103/PhysRevD.90.123514
[38] S. Davidson, 2015 Axions: Bose Einstein condensate or classical field?, https://doi.org/10.1016/j.astropartphys.2014.12.007 Astropart. Phys.65 101 [1405.1139] · doi:10.1016/j.astropartphys.2014.12.007
[39] A.H. Guth, M.P. Hertzberg and C. Prescod-Weinstein, 2015 Do dark matter axions form a condensate with long-range correlation?, https://doi.org/10.1103/PhysRevD.92.103513 Phys. Rev. D92 103513 [1412.5930] · doi:10.1103/PhysRevD.92.103513
[40] M.P. Hertzberg, 2016 Quantum and classical behavior in interacting bosonic systems J. Cosmol. Astropart. Phys.2016 11 037 [1609.01342]
[41] E. Joos and H.D. Zeh, 1985 The Emergence of classical properties through interaction with the environment, https://doi.org/10.1007/BF01725541 Z. Phys. B59 223 · doi:10.1007/BF01725541
[42] M.R. Gallis and G.N. Fleming, 1990 Environmental and spontaneous localization, https://doi.org/10.1103/PhysRevA.42.38 Phys. Rev. A42 38 · doi:10.1103/PhysRevA.42.38
[43] L. Diosi, 1995 Quantum master equation of particle in gas environment, https://doi.org/10.1209/0295-5075/30/2/001 Europhys. Lett.30 63 [gr-qc/9403046] · doi:10.1209/0295-5075/30/2/001
[44] D. Giulini, C. Kiefer, E. Joos, J. Kupsch, I. Stamatescu and H. Zeh, 2003 Decoherence and the appearance of a classical world in quantum theory, 2nd Edition, Springer · Zbl 0855.00003
[45] C. Kiefer and E. Joos, 1999 Decoherence: concepts and examples, https://doi.org/10.1007/BFb0105342 Lect. Notes Phys.517 105 [quant-ph/9803052] · doi:10.1007/BFb0105342
[46] P.J. Dodd and J.J. Halliwell, 2003 Decoherence and records for the case of a scattering environment, https://doi.org/10.1103/PhysRevD.67.105018 Phys. Rev. D67 105018 [quant-ph/0301104] · doi:10.1103/PhysRevD.67.105018
[47] K. Hornberger and J.E. Sipe, 2003 Collisional decoherence reexamined, https://doi.org/10.1103/PhysRevA.68.012105 Phys. Rev. A68 012105 · doi:10.1103/PhysRevA.68.012105
[48] M. Schlosshauer, 2004 Decoherence, the measurement problem and interpretations of quantum mechanics, https://doi.org/10.1103/RevModPhys.76.1267 Rev. Mod. Phys.76 1267 [quant-ph/0312059] · doi:10.1103/RevModPhys.76.1267
[49] M.A. Schlosshauer, 2007 Decoherence: and the quantum-to-classical transition, ISBN 978-3-540-35773-5 Springer-Verlag
[50] K. Hornberger, 2009 Introduction to decoherence theory, in: A. Buchleitner, C. Viviescas, M. Tierscheds. https://doi.org/10.1007/978-3-540-88169-85 Lect. Notes Phys.768 Springer, Berlin, Heidelberg p. 221 · Zbl 1161.81322 · doi:10.1007/978-3-540-88169-85
[51] M. Schlosshauer, 2019 Quantum decoherence, https://doi.org/10.1016/j.physrep.2019.10.001 Phys. Rept.831 1 [1911.06282] · doi:10.1016/j.physrep.2019.10.001
[52] J.J. Sakurai, 1993 Modern quantum mechanics (revised edition), ISBN-10: 0201539292, Addison Wesley
[53] H. Murayama, Quantum Mechanics II notes, http://hitoshi.berkeley.edu/221B/index.html
[54] T. Norsen, J. Lande and S.B. McKagan, How and why to think about scattering in terms of wave packets instead of plane waves, [0808.3566]
[55] K. Ishikawa and Y. Tobita, 2009 On coherence lengths of wave packets, https://doi.org/10.1143/PTP.122.1111 Prog. Theor. Phys.122 1111 · Zbl 1185.81074 · doi:10.1143/PTP.122.1111
[56] D.V. Karlovets, G.L. Kotkin and V.G. Serbo, 2015 Born approximation for scattering of wave packets on atoms. I. Theoretical background for scattering of a wave packet on a potential field, https://doi.org/10.1103/PhysRevA.92.052703 Phys. Rev. A92 052703 [1508.00026] · doi:10.1103/PhysRevA.92.052703
[57] R.D. Peccei and H.R. Quinn, 1977 CP conservation in the presence of instantons, https://doi.org/10.1103/PhysRevLett.38.1440 Phys. Rev. Lett.38 1440 · doi:10.1103/PhysRevLett.38.1440
[58] S. Weinberg, 1978 A new light boson?, https://doi.org/10.1103/PhysRevLett.40.223 Phys. Rev. Lett.40 223 · doi:10.1103/PhysRevLett.40.223
[59] F. Wilczek, 1978 Problem of strong P and T invariance in the presence of instantons, https://doi.org/10.1103/PhysRevLett.40.279 Phys. Rev. Lett.40 279 · doi:10.1103/PhysRevLett.40.279
[60] J. Preskill, M.B. Wise and F. Wilczek, 1983 Cosmology of the invisible axion, https://doi.org/10.1016/0370-2693(83)90637-8 Phys. Lett. B120 127 · doi:10.1016/0370-2693(83)90637-8
[61] L.F. Abbott and P. Sikivie, 1983 A cosmological bound on the invisible axion, https://doi.org/10.1016/0370-2693(83)90638-X Phys. Lett. B120 133 · doi:10.1016/0370-2693(83)90638-X
[62] M. Dine and W. Fischler, 1983 The not so harmless axion, https://doi.org/10.1016/0370-2693(83)90639-1 Phys. Lett. B120 137 · doi:10.1016/0370-2693(83)90639-1
[63] M. Kuster, G. Raffelt and B. Beltran, 2007 Axions: theory, cosmology, and experimental searches, Springer
[64] J. Jaeckel and A. Ringwald, 2010 The low-energy frontier of particle physics, https://doi.org/10.1146/annurev.nucl.012809.104433 Ann. Rev. Nucl. Part. Sci.60 405 [1002.0329] · doi:10.1146/annurev.nucl.012809.104433
[65] J.I. Read, 2014 The local dark matter density, https://doi.org/10.1088/0954-3899/41/6/063101 J. Phys. G41 063101 [1404.1938] · doi:10.1088/0954-3899/41/6/063101
[66] M. Kuhlen, M. Vogelsberger and R. Angulo, 2012 Numerical simulations of the dark universe: state of the art and the next decade, https://doi.org/10.1016/j.dark.2012.10.002 Phys. Dark Univ.1 50 [1209.5745] · doi:10.1016/j.dark.2012.10.002
[67] Particle Data Group collaboration, 2018 Review of particle physics, https://doi.org/10.1103/PhysRevD.98.030001 Phys. Rev. D98 030001 · doi:10.1103/PhysRevD.98.030001
[68] P. Sikivie and Q. Yang, 2009 Bose-Einstein condensation of dark matter axions, https://doi.org/10.1103/PhysRevLett.103.111301 Phys. Rev. Lett.103 111301 [0901.1106] · doi:10.1103/PhysRevLett.103.111301
[69] O. Erken, P. Sikivie, H. Tam and Q. Yang, 2012 Cosmic axion thermalization, https://doi.org/10.1103/PhysRevD.85.063520 Phys. Rev. D85 063520 [1111.1157] · doi:10.1103/PhysRevD.85.063520
[70] I.I. Tkachev, 1986 Coherent scalar field oscillations forming compact astrophysical objects Sov Astron. Lett.12 305
[71] M. Gleiser, 1988 Stability of boson stars, https://doi.org/10.1103/PhysRevD.38.2376 Phys. Rev. D38 2376 [Erratum ibid 39 (1989) 1257] · doi:10.1103/PhysRevD.38.2376
[72] E. Seidel and W.-M. Suen, 1990 Dynamical evolution of boson stars. 1. perturbing the ground state, https://doi.org/10.1103/PhysRevD.42.384 Phys. Rev. D42 384 · doi:10.1103/PhysRevD.42.384
[73] I.I. Tkachev, 1991 On the possibility of Bose star formation, https://doi.org/10.1016/0370-2693(91)90330-S Phys. Lett. B261 289 · doi:10.1016/0370-2693(91)90330-S
[74] P. Jetzer, 1992 Boson stars, https://doi.org/10.1016/0370-1573(92)90123-H Phys. Rept.220 163 · doi:10.1016/0370-1573(92)90123-H
[75] A.R. Liddle and M.S. Madsen, 1992 The structure and formation of boson stars, https://doi.org/10.1142/S0218271892000057 Int. J. Mod. Phys. D1 101 · Zbl 0941.83519 · doi:10.1142/S0218271892000057
[76] E.W. Kolb and I.I. Tkachev, 1993 Axion miniclusters and Bose stars, https://doi.org/10.1103/PhysRevLett.71.3051 Phys. Rev. Lett.71 3051 [hep-ph/9303313] · doi:10.1103/PhysRevLett.71.3051
[77] R. Sharma, S. Karmakar and S. Mukherjee, Boson star and dark matter, [0812.3470]
[78] P.-H. Chavanis, 2011 Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions: I. Analytical results, https://doi.org/10.1103/PhysRevD.84.043531 Phys. Rev. D84 043531 [1103.2050] · doi:10.1103/PhysRevD.84.043531
[79] P.H. Chavanis and L. Delfini, 2011 Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions: II. Numerical results, https://doi.org/10.1103/PhysRevD.84.043532 Phys. Rev. D84 043532 [1103.2054] · doi:10.1103/PhysRevD.84.043532
[80] S.L. Liebling and C. Palenzuela, 2017 Dynamical boson stars, https://doi.org/10.12942/lrr-2012-6 Living Rev. Rel.20 5 [1202.5809] · Zbl 1320.83006 · doi:10.12942/lrr-2012-6
[81] E.D. Schiappacasse and M.P. Hertzberg, 2018 Analysis of dark matter axion clumps with spherical symmetry J. Cosmol. Astropart. Phys.2018 01 037 [Erratum ibid 03 (2018) E01] [1710.04729]
[82] L. Visinelli, S. Baum, J. Redondo, K. Freese and F. Wilczek, 2018 Dilute and dense axion stars, https://doi.org/10.1016/j.physletb.2017.12.010 Phys. Lett. B777 64 [1710.08910] · doi:10.1016/j.physletb.2017.12.010
[83] M.P. Hertzberg and E.D. Schiappacasse, 2018 Scalar dark matter clumps with angular momentum J. Cosmol. Astropart. Phys.2018 08 028 [1804.07255] · Zbl 1536.83179
[84] D.G. Levkov, A.G. Panin and I.I. Tkachev, 2018 Gravitational Bose-Einstein condensation in the kinetic regime, https://doi.org/10.1103/PhysRevLett.121.151301 Phys. Rev. Lett.121 151301 [1804.05857] · doi:10.1103/PhysRevLett.121.151301
[85] M.P. Hertzberg and E.D. Schiappacasse, 2018 Dark matter axion clump resonance of photons J. Cosmol. Astropart. Phys.2018 11 004 [1805.00430]
[86] M.P. Hertzberg, Y. Li and E.D. Schiappacasse, Merger of dark matter axion clumps and resonant photon emission, [2005.02405] · Zbl 1492.83038
[87] G. Dvali and S. Zell, 2018 Classicality and quantum break-time for cosmic axions J. Cosmol. Astropart. Phys.2018 07 064 [1710.00835]
[88] J.E. Kim, 1979 Weak interaction singlet and strong CP invariance, https://doi.org/10.1103/PhysRevLett.43.103 Phys. Rev. Lett.43 103 · doi:10.1103/PhysRevLett.43.103
[89] M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, 1980 Can confinement ensure natural CP invariance of strong interactions?, https://doi.org/10.1016/0550-3213(80)90209-6 Nucl. Phys. B166 493 · doi:10.1016/0550-3213(80)90209-6
[90] M. Dine, W. Fischler and M. Srednicki, 1981 A simple solution to the strong CP problem with a harmless axion, https://doi.org/10.1016/0370-2693(81)90590-6 Phys. Lett. B104 199 · doi:10.1016/0370-2693(81)90590-6
[91] A.R. Zhitnitsky, 1980 On possible suppression of the axion hadron interactions. (in russian) Sov. J. Nucl. Phys.31 260
[92] J.E. Kim and G. Carosi, 2010 Axions and the Strong CP Problem, https://doi.org/10.1103/RevModPhys.82.557 Rev. Mod. Phys.82 557 [Erratum ibid 91 (2019) 049902] [0807.3125] · doi:10.1103/RevModPhys.82.557
[93] L. Berezhiani and J. Khoury, 2015 Theory of dark matter superfluidity, https://doi.org/10.1103/PhysRevD.92.103510 Phys. Rev. D92 103510 [1507.01019] · doi:10.1103/PhysRevD.92.103510
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.