×

A variable Eddington factor model for thermal radiative transfer with closure based on data-driven shape function. (English) Zbl 07880701

Summary: A new variable Eddington factor (VEF) model is presented for nonlinear problems of thermal radiative transfer (TRT). The VEF model is data-driven and acts on known (a-priori) radiation-diffusion solutions for material temperatures in the TRT problem. A linear auxiliary problem is constructed for the radiative transfer equation (RTE) whose emission source and opacities are evaluated at these known material temperatures. The solution to this RTE approximates the specific intensity distribution in phase-space and time. It is applied as a shape function to define the Eddington tensor for the presented VEF model. The shape function computed via the auxiliary RTE problem will capture some degree of transport effects within the TRT problem. The VEF moment equations closed with this approximate Eddington tensor will thus carry with them these captured transport effects. In this study, the temperature data comes from multigroup \(P_1\), \(P_{1 / 3}\), and flux-limited diffusion radiative transfer models. The proposed VEF model can be interpreted as a transport-corrected diffusion reduced-order model. Numerical results are presented on the Fleck-Cummings test problem which models a supersonic wavefront of radiation. The VEF model is shown to improve accuracy by 1-2 orders of magnitude compared to the considered radiation-diffusion model solutions to the TRT problem.

MSC:

82-XX Statistical mechanics, structure of matter

Software:

CASTRO

References:

[1] Abu-Shumays, L. K.2001. Angular quadratures for improved transport computations. Transp. Theory Statist. Phys.30(2-3): 169-204. · Zbl 1106.82375
[2] Alberti, A. L., and Palmer, T. S.. 2018. Reduced order modeling of non-linear radiation diffusion via proper generalized decomposition. Trans. Am. Nucl. Soc.119: 691-4.
[3] Alberti, A. L., and Palmer, T. S.. 2019. Reduced order modeling of the TWIGL problem using proper generalized decomposition. In Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering(M&C 2019), 14. Portland, OR.
[4] Alberti, A. L., and Palmer, T. S.. 2020. Reduced-order modeling of nuclear reactor kinetics using proper generalized decomposition. Nucl. Sci. Eng.194(10): 837-58.
[5] Alberti, A. L., Palmer, T. S., and Palmer, C. J.. 2022. Orthogonal decomposition based reduced-order modeling of flux-limited gray thermal radiation. J. Quant. Spectrosc. Radiat. Transf.292: 108345.
[6] Alldredge, G. W., Hauck, C. D., and Tits, A. L.. 2012. High-order entropy-based closures for linear transport in slab geometry II: A computational study of the optimization problem. SIAM J. Sci. Comput.34(4): B361-B391. · Zbl 1297.82032
[7] Anistratov, D. Y., and Stehle, N.. 2012. Computational transport methodology based on decomposition of a problem domain into transport and diffusive subdomains. J. Comput. Phys.231(24): 8009-28. .
[8] Askew, J. R.1972. A characteristic formulation of the neutron transport equation in complicated geometries. Technical Report M1108, United Kingdom Atomic Energy Establishment.
[9] Askew, J. R., and Roth, M. J.. 1982. WIMS-E: A scheme for neutronics calculations. Technical Report AEEW-R-1315, United Kingdom Atomic Energy Authority.
[10] Auer, L. H., and Mihalas, D.. 1970. On the use of variable Eddington factors in non-LTE stellar atmospheres computations. MNRAS.149(1): 65-74.
[11] Behne, P., Ragusa, J. C., and Tano, M.. 2021. Projection-based parametric model order reduction for transport simulation based on affine decomposition of the operators. In Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering(M&C 2021), 10. Raleigh, NC.
[12] Behne, P. A., Ragusa, J. C., and Morel, J. E.. 2019. Model order reduction for \(S_N\) radiation transport. In Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering(M&C 2019), 10. Portland, OR.
[13] Brough, H. D., and Chudley, C. T.. 1980. Characteristic ray solutions of the transport equation. In Advances in Nuclear Science and Technology, ed. Lewis, J. and Becker, M., vol. 12, 1-30. New York: Plenum Press.
[14] Buchan, A. G., Calloo, A. A., Goffin, M. G., Dargaville, S., Fang, F., Pain, C. C., and Navon, I. M.. 2015. A POD reduced order model for resolving angular direction in neutron/photon transport problems. J.Comput. Phys.296: 138-57. · Zbl 1352.82030
[15] Cherezov, A., Sanchez, R., and Joo, H. G.. 2018. A reduced-basis element method for pin-by-pin reactor core calculations in diffusion and \(S P_3\) approximations. Ann. Nucl. Energy116: 195-209.
[16] Choi, Y., Brown, P., Arrighi, W., Anderson, R., and Huynh, K.. 2021. Space-time reduced order model for large-scale linear dynamical systems with application to Boltzmann transport problems. J. Comput. Phys.424:109845. · Zbl 07508450
[17] Coale, J. M., and Anistratov, D. Y.. 2019a. Data-driven grey reduced-order model for thermal radiative transfer problems based on low-order quasidiffusion equations and proper orthogonal decomposition. Trans. Am. Nucl. Soc.121: 836-9.
[18] Coale, J. M., and Anistratov, D. Y.. 2019b. A reduced-order model for thermal radiative transfer problems based on multilevel quasidiffusion method. In Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C2019), 10. Portland, OR.
[19] Coale, J. M., and Anistratov, D. Y.. 2021. Reduced-order models for thermal radiative transfer based on POD-Galerkin method and low-order quasidiffusion equations. In Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2021), 10. Raleigh, NC.
[20] Coale, J. M., and Anistratov, D. Y.. 2023a. Multilevel method for thermal radiative transfer problems with method of long characteristics for the Boltzmann transport equation. In Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2023), 10. Niagara Falls, Ontario, Canada.
[21] Coale, J. M., and Anistratov, D. Y.. 2023b. A reduced-order model for nonlinear radiative transfer problems based on moment equations and POD-Petrov-Galerkin projection of the normalized Boltzmann transport equation. Preprint on arXiv:2308.15375, math.NA.
[22] Coale, J. M., and Anistratov, D. Y.. 2023c. A reduced-order model for thermal radiative transfer problems based on POD-Petrov-Galerkin projection of the normalized Boltzmann transport equation. In Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2023), 10. Niagara Falls, Ontario, Canada.
[23] Coale, J. M., and Anistratov, D. Y.. 2023d. Reduced order models for thermal radiative transfer problems based on moment equations and data-driven approximations of the Eddington tensor. J. Quant. Spectrosc. Radiat. Transfer296: 108458.
[24] Dominesey, K. A., and Ji, W.. 2019. Reduced-order modeling of neutron transport seperated in space and angle via proper generalized decomposition. In Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering(M&C 2019), 10. Portland, OR.
[25] Dominesey, K. A., and Ji, W.. 2022. Reduced-order modeling of neutron transport separated in energy by proper generalized decomposition with applications to nuclear reactor physics. J. Comput. Phys.449: 110744. · Zbl 07524761
[26] Drake, R. P.2018. High-energy-density-physics: Foundation of inertial fusion and experimental astrophysics. Heidelberg, Berlin: Springer.
[27] Eddington, A.1926. The Internal Constitution of the Stars. New York: Dover. · JFM 52.1021.05
[28] Edenius, M., Ekberg, K., Forssén, B. H., and Knott, D.. 1993. CASM0-4, a fuel assembly burnup program, user’s manual (Studsvik/SOA-93/1). Idaho Falls, ID: Studsvik of America.
[29] Elhareef, M. H., Wu, Z., and Ma, Y.. 2021. Physics-informed deep learning neural network solution to the neutron diffusion model. In Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering(M&C 2021), 10. Raleigh, NC.
[30] Elzohery, R., and Roberts, J.. 2021a. Exploring transient, neutronic, reduced-order models using DMD/POD-Galerkin and data-driven DMD. EPJ Web Conf.247: 15019. .
[31] Elzohery, R., and Roberts, J.. 2021b. Modeling neutronic transients with Galerkin projection onto a greedy-sampled, POD subspace. Ann. Nucl. Energy.162: 108487.
[32] Elzohery, R., and Roberts, J.. 2021c. A multiphysics reduced-order model for neutronic transient using POD-Galerkin projection and DEIM. Trans. Am. Nucl. Soc.125: 440-3.
[33] Faghri, M., and Sundén, B.. 2008. Transport phenomena in fires. In Developments in heat transfer, vol. 20. Southampton, Boston: WIT.
[34] Fagiano, L., and Gati, R.. 2016. On the order reduction of the radiative heat transfer model for the simulation of plasma arcs in switchgear devices. J. Quantit. Spectro. Radiat Transf.169: 58-78.
[35] Fleck, J. A., and Cummings, J. D.. 1971. An implicit Monte Carlo scheme for calculating time and frequency dependent nonlinear radiation transport. J. Comp. Phys.8(3): 313-42. · Zbl 0229.65087
[36] Fryer, C. L., Diaw, A., Fontes, C. J., Hungerford, A. L., Kline, J., Johns, H., Lanier, N. E., Wood, S., and Urbatsch, T.. 2020. Designing radiation transport tests: Simulation-driven uncertainty-quantification of the COAX temperature diagnostic. High Energy Density Phys.35: 100738.
[37] Fryer, C. L., Dodd, E., Even, W., Fontes, C. J., Greeff, C., Hungerford, A., Kline, J., Mussack, K., Tregillis, I., Workman, J. B., et al.2016. Uncertainties in radiation flow experiments. High Energy Density Phys.18: 45-54.
[38] German, P., Ragusa, J. C., and Fiorina, C.. 2019. Application of multiphysics model order reduction to Doppler/neutronic feedback. EPJ Nuclear Sci. Technol.5: 17.
[39] German, P., Ragusa, J. C., Fiorina, C., and Retamales, M. T.. 2019. Reduced-order modeling of parameterized multi-physics computations for the molten salt fast reactor. In Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering(M&C 2019), 10. Portland, OR.
[40] German, P., Tano, M. E., and Ragusa, J. C.. 2021. Reduced-order modeling of coupled neutronics and fluid dynamics in the zero-power molten salt fast reactor. In Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering(M&C 2021), 10. Raleigh, NC.
[41] Ghassemi, P., and Anistratov, D. Y.. 2020. Multilevel quasidiffusion method with mixed-order time discretization for multigroup thermal radiative transfer problems. J. Comput. Phys.409: 109315. · Zbl 1435.80010
[42] Girault, M., Liu, Y., Billaud, Y., Benselama, A. M., Saury, D., and Lemonnier, D.. 2021. Reduced order models for conduction and radiation inside semi-transparent media via the model identification method. Int. J. Heat Mass Transf.168: 120598.
[43] Gol’din, V. Y.1960. Characteristic difference scheme for non-stationary kinetic equation. Soviet Mathematics Doklady1: 902-6.
[44] Gol’din, V. Y.1964. A quasi-diffusion method of solving the kinetic equation. USSR Comp. Math. Math. Phys4: 136-49. · Zbl 0149.11804
[45] Gol’din, V. Y., and Chetverushkin, B. N.. 1972. Methods of solving one-dimensional problems of radiation gas dynamics. USSR Comp. Math. Math. Phys.12(4): 177-89.
[46] Gol’din, V. Y., Gol’dina, D. A., Kolpakov, A. V., and Shilkov, A. V.. 1986. Mathematical modeling of hydrodynamics processes with high-energy density radiation. Prob. Atom. Sci. Eng.2: 59-88 (in Russian).
[47] González, M., Vaytet, N., Commerçon, B., and Masson, J.. 2015. Multigroup radiation hydrodynamics with flux-limited diffusion and adaptive mesh refinement. A&A.578: A12.
[48] Guymer, T. M., Moore, A. S., Morton, J., Kline, J. L., Allan, S., Bazin, N., Benstead, J., Bentley, C., Comley, A. J., Cowan, J., et al.2015. Quantifying equation-of-state and opacity errors using integrated supersonic diffusive radiation flow experiments on the national ignition facility. Physics of Plasmas22(4): 043303.
[49] Hardy, Z. K., Morel, J. E., and Ahrens, C.. 2019. Dynamic mode decomposition for subcritical metal systems. In Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering(M&C 2019), 10. Portland, OR.
[50] Hauck, C. D.2011. High-order entropy-based closures for linear transport in slab geometry. Communications in Mathematical Sciences9(1): 187-205. · Zbl 1284.82050
[51] Huang, Z., Chen, Y., Christlieb, A., and Roberts, L.. 2022. Machine learning moment closure models for the radiative transfer equation I: Directly learning a gradient based closure. J. Comput. Phys.453: 110941. · Zbl 1522.65143
[52] Hughes, A. C., and Buchan, A. G.. 2022. An adaptive reduced order model for the angular discretisation of the Boltzmann transport equation using independent basis sets over a partitioning of the space-angle domain. Numerical Meth. Engineering123(16): 3781-99. · Zbl 07768052
[53] Johnson, S. R., and Larsen, E. W.. 2011a. An anisotropic diffusion approximation to thermal radiative transfer. In Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011), 10. Rio de Janeiro, RJ, Brazil.
[54] Johnson, S. R., and Larsen, E. W.. 2011b. Boundary conditions for the anisotropic diffusion approximation. Trans. Am. Nucl. Soc.105: 443-5.
[55] Kershaw, D. S.1976. Flux limiting nature‘s own way – a new method for numerical solution of the transport equation (technical report). Livermore, CA: Lawrence Livermore National Laboratory.
[56] Klassen, M., Kuiper, R., Pudritz, R. E., Peters, T., Banerjee, R., and Buntemeyer, L.. 2014. A general hybrid radiation transport scheme for star formation simulations on an adaptive grid. APJ.797(1): 4.
[57] Krumholz, M. R., Klein, R. I., McKee, C. F., and Bolstad, J.. 2007. Equations and algorithms for mixed-frame flux-limited diffusion radiation hydrodynamics. APJ.667(1): 626-43.
[58] Kuiper, R., Klahr, H., Dullemond, C., Kley, W., and Henning, T.. 2010. Fast and accurate frequency-dependent radiation transport for hydrodynamics simulations in massive star formation. A&A.511: A81.
[59] LeBlanc, J. M., and Wilson, J. R.. 1970. Analytic closures for M_1 neutrino transport. APJ.161: 541-51.
[60] Levermore, C. D.1984. Relating Eddington factors to flux limiters. J. Quantit. Spectrosc. Radiat. Transf.31(2): 149-60.
[61] Levermore, C. D.1996. Moment closure hierarchies for kinetic theories. J. Stat. Phys.83(5-6): 1021-65. · Zbl 1081.82619
[62] Levermore, C. D., and Pomraning, G. C.. 1981. A flux-limited diffusion theory. APJ.248: 321-34.
[63] Mihalas, D., and Weibel-Mihalas, B.. 1984. Foundation of radiation hydrodynamics. Mineola, NY: Oxford University Press. · Zbl 0651.76005
[64] Minerbo, G. N.1978. Maximum entropy Eddington factors. J. Quantit. Spectrosc. Radiat Transf.20(6): 541-5.
[65] Moore, A. S., Guymer, T. M., Morton, J., Williams, B., Kline, J. L., Bazin, N., Bentley, C., Allan, S., Brent, K., Comley, A. J., et al.2015. Characterization of supersonic radiation waves. J. Spectros. Radiat. Transf.159: 19-28.
[66] Morel, J. E.2000. Diffusion-limit asymptotics of the transport equation, the \(P_{1 / 3}\) equations, and two flux-limited diffusion theories. J. Quantit. Spectrosc. Radiat. Transf.65(5): 769-78.
[67] Murchikova, E. M., Abdikamalov, E., and Urbatsch, T.. 2017. Analytic closures for M_1 neutrino transport. Month. Not. Royal Astronom. Soc.469(2): 1725-37.
[68] Olso, G. L., Auer, L. H., and Hall, M. L.. 2000. Diffusion, \( P_1,\) and other approximate forms of radiation transport. J. Quantitat. Spectrosc. Radiat. Transf.64(6): 619-34.
[69] Peng, Z., Chen, Y., Cheng, Y., and Li, F.. 2022. A reduced basis method for radiative transfer equation. J. Sci. Comput.91(1): 1-27. · Zbl 1493.65162
[70] Peng, Z., and McClarren, R.. 2019. A high-order/low-order (HOLO) algorithm with low-rank evolution for time-dependent transport calculations. Trans. Am. Nucl. Soc.121: 805-7.
[71] Peng, Z., and McClarren, R. G.. 2021. A low-rank method for the discrete ordinate transport equation compatible with transport sweeps. In Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering(M&C 2021), 10. Raleigh, NC.
[72] Peng, Z., McClarren, R. G., and Frank, M.. 2019. A low-rank method for time-dependent transport calculations. In Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering(M&C 2019), 10. Portland, OR.
[73] Peng, Z., McClarren, R. G., and Frank, M.. 2020. A low-rank method for two-dimensional time-dependent radiation transport calculations. J. Comput. Phys.421: 109735. · Zbl 1537.76091
[74] Phillips, T. R. F., Heaney, C. E., Tollit, B. S., Smith, P. N., and Pain, C. C.. 2021. Reduced-order modelling with domain decomposition applied to multi-group neutron transport. Energies.14(5): 1369.
[75] Pinnau, R., and Schulze, A.. 2007. Model reduction techniques for frequency averaging in radiative heat transfer. J. Comput. Phys.226(1): 712-31. · Zbl 1124.35323
[76] Pomraning, G. C.1969. An extension of the Eddington approximation. J. Quant. Spectrosc. Radiat. Transf.9(3): 407-22.
[77] Pozulp, M. M.2019. 1D transport using neural nets, \( S_N,\) and MC. In Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering(M&C 2019), 10. Portland, OR.
[78] Pozulp, M. M., Brantley, P. S., Palmer, T. S., and Vujic, J. L.. 2021. Heterogeneity, hyperparameters, and GPUs: Towards useful transport calculations using neural networks. In Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering(M&C 2021), 10. Raleigh, NC.
[79] Prince, Z. M., and Ragusa, J. C.. 2019a. Proper generalized decomposition of multigroup neutron diffusion with seperated space-energy representation. In Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering(M&C 2019), 10. Portland, OR.
[80] Prince, Z. M., and Ragusa, J. C.. 2019b. Seperated representation of spatial dimensions in \(S_N\) neutron transport using the proper generalized decomposition. In Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering(M&C 2019), 10. Portland, OR.
[81] Qian, J., Wang, Y., Song, H., Pant, K., Peabody, H., Ku, J., and Butler, C. D.. 2015. Projection-based reduced-order modeling for spacecraft thermal analysis. J. Spacecraft Rocket.52(3): 978-89.
[82] Shu, F. H.1991. The physics of astrophysics. Mill Valley, CA: University Science Books.
[83] Simmons, K. H., and Mihalas, D.. 2000. A linearized analysis of the modified \(P_1\) equations. J. Quantitat. Spectrosc. Radiat. Transf.66(3): 263-9.
[84] Skinner, M. A., and Ostriker, E. C.. 2013. A two-moment radiation hydrodynamics module in Athena using a time-explicit Godunov method. APJS.206(2): 21.
[85] Soucasse, L., Buchan, A. G., Dargaville, S., and Pain, C. C.. 2019. An angular reduced order model for radiative transfer in non grey media. J. Quantit. Spectrosc. Radiat. Transf.229: 23-32.
[86] Stehle, N., Anistratov, D., and Adams, M.. 2014. A hybrid transport-diffusion method for 2D transport problems with diffusive subdomains. Comput. Phys.270: 325-44. . · Zbl 1349.82121
[87] Su, B., Fried, M. G., and Larsen, E. W.. 2001. Stability analysis of the variable Eddington factor method. Transp. Theory Stat. Phys.30(4-6): 439-55. · Zbl 0992.82032
[88] Swesty, F. D., and Myra, E. S.. 2009. A numerical algorithm for modeling multigroup neutrino-radiation hydrodynamics in two spatial dimensions. APJS.181(1): 1-52.
[89] Takeuchi, K.1969. A numerical method for solving the neutron transport equation in finite cylindrical geometry. J. Nucl. Sci. Technol.6(8): 466-73.
[90] Tencer, J., Carlberg, K., Larsen, M., and Hogan, R.. 2017. Accelerated solution of discrete Ordinates approximation to the Boltzmann transport equation for a gray absorbing-emitting medium via model reduction. Journal of Heat Transfer139(12): 122701.
[91] Tetsu, H., and Nakamoto, T.. 2016. Comparison of implicit schemes to solve equations of radiation hydrodynamics with a flux-limited diffusion approximation: Newton-Raphson, operator splitting, and linearization. APJS.223 (1):14.
[92] Thomas, G. E., and Stamnes, K.. 1999. Radiative transfer in the atmosphere and ocean. Cambridge, UK: Cambridge University Press.
[93] Trahan, T. J., and Larsen, E. W.. 2009. 2-D Anisotropic diffusion in optically thin channels. Transact. Am. Nucl. Soc.101: 387-9.
[94] Trahan, T. J., and Larsen, E. W.. 2011. 3-D anisotropic diffusion in optically thick media with optically thin channels. In Proceedings of International Confernece on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011), 10. Rio de Janeiro, RJ, Brazil.
[95] Winkler, K.-H A., Norman, M. L., and Mihalas, D.. 1985. Implicit adaptive-grid radiation hydrodynamics. In Multiple time scales, ed. J. U. Brackbill and B. I. Cohen, 146-185. Orlando, FL: Academic Press.
[96] Zeldovich, Y. B., and Razier, Y. P.. 1966. Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. New York: Academic.
[97] Zhang, W., Howell, L., Almgren, A., Burrows, A., Dolence, J., and Bell, J.. 2013. CASTRO: A new compressible astrophysical solver. III. Multigroup radiation hydrodynamics. APJS.204(1): 7.
[98] Zika, M., and Adams, M.. 2000. Acceleration for long-characteristics assembly-level transport problems. Nucl. Sci. Eng.134(2): 135-58.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.