×

Machine learning moment closure models for the radiative transfer equation. I: Directly learning a gradient based closure. (English) Zbl 1522.65143

Summary: In this paper, we take a data-driven approach and apply machine learning to the moment closure problem for the radiative transfer equation in slab geometry. Instead of learning the unclosed high order moment, we propose to directly learn the gradient of the high order moment using neural networks. This new approach is consistent with the exact closure we derive for the free streaming limit and also provides a natural output normalization. A variety of benchmark tests, including the variable scattering problem, the Gaussian source problem with both periodic and reflecting boundaries, and the two-material problem, show both good accuracy and generalizability of our machine learning closure model.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65N06 Finite difference methods for boundary value problems involving PDEs
85A25 Radiative transfer in astronomy and astrophysics
80A21 Radiative heat transfer
68Q32 Computational learning theory
68T07 Artificial neural networks and deep learning
68T09 Computational aspects of data analysis and big data
82C70 Transport processes in time-dependent statistical mechanics
35R09 Integro-partial differential equations
35Q20 Boltzmann equations

Software:

PyTorch

References:

[1] Alldredge, G. W.; Hauck, C. D.; OLeary, D. P.; Tits, A. L., Adaptive change of basis in entropy-based moment closures for linear kinetic equations, J. Comput. Phys., 258, 489-508 (2014) · Zbl 1349.82066
[2] Alldredge, G. W.; Hauck, C. D.; Tits, A. L., High-order entropy-based closures for linear transport in slab geometry II: A computational study of the optimization problem, SIAM J. Sci. Comput., 34, 4, B361-B391 (2012) · Zbl 1297.82032
[3] Alldredge, G. W.; Li, R.; Li, W., Approximating the \(M_2\) method by the extended quadrature method of moments for radiative transfer in slab geometry, Kinet. Relat. Models, 9, 2, 237 (2016) · Zbl 1333.78018
[4] Bird, G., Molecular Gas Dynamics and the Direct Simulation of Gas Flows (1994), Clarendon Press: Clarendon Press Oxford, United Kingdom
[5] Bois, L.; Franck, E.; Navoret, L.; Vigon, V., A neural network closure for the Euler-Poisson system based on kinetic simulations (2020), arXiv preprint
[6] Brunton, S. L.; Proctor, J. L.; Kutz, J. N., Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci., 113, 15, 3932-3937 (2016) · Zbl 1355.94013
[7] Buchan, A. G.; Calloo, A.; Goffin, M. G.; Dargaville, S.; Fang, F.; Pain, C. C.; Navon, I. M., A POD reduced order model for resolving angular direction in neutron/photon transport problems, J. Comput. Phys., 296, 138-157 (2015) · Zbl 1352.82030
[8] Bünger, J.; Sarna, N.; Torrilhon, M., Stable boundary conditions and discretization for pn equations (2020), arXiv preprint
[9] Cai, Z.; Fan, Y.; Li, R., Globally hyperbolic regularization of Grad’s moment system, Commun. Pure Appl. Math., 67, 3, 464-518 (2014) · Zbl 1307.35182
[10] Chandrasekhar, S., On the radiative equilibrium of a stellar atmosphere, Astrophys. J., 99, 180 (1944) · Zbl 0060.46301
[11] Crockatt, M. M.; Christlieb, A. J.; Garrett, C. K.; Hauck, C. D., An arbitrary-order, fully implicit, hybrid kinetic solver for linear radiative transport using integral deferred correction, J. Comput. Phys., 346, 212-241 (2017) · Zbl 1380.65300
[12] Crockatt, M. M.; Christlieb, A. J.; Garrett, C. K.; Hauck, C. D., Hybrid methods for radiation transport using diagonally implicit Runge-Kutta and space-time discontinuous Galerkin time integration, J. Comput. Phys., 376, 455-477 (2019) · Zbl 1416.65343
[13] Fan, Y.; Li, R.; Zheng, L., A nonlinear hyperbolic model for radiative transfer equation in slab geometry, SIAM J. Appl. Math., 80, 6, 2388-2419 (2020) · Zbl 1455.35247
[14] Fan, Y.; Li, R.; Zheng, L., A nonlinear moment model for radiative transfer equation in slab geometry, J. Comput. Phys., 404, Article 109128 pp. (2020) · Zbl 1453.65248
[15] Frank, M.; Hauck, C. D.; Olbrant, E., Perturbed, entropy-based closure for radiative transfer (2012), arXiv preprint
[16] Guo, W.; Cheng, Y., A sparse grid discontinuous Galerkin method for high-dimensional transport equations and its application to kinetic simulations, SIAM J. Sci. Comput., 38, 6, A3381-A3409 (2016) · Zbl 1353.82064
[17] Guo, W.; Cheng, Y., An adaptive multiresolution discontinuous Galerkin method for time-dependent transport equations in multidimensions, SIAM J. Sci. Comput., 39, 6, A2962-A2992 (2017) · Zbl 1379.65077
[18] Han, J.; Jentzen, A.; E, W., Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci., 115, 34, 8505-8510 (2018) · Zbl 1416.35137
[19] Han, J.; Ma, C.; Ma, Z.; E, W., Uniformly accurate machine learning-based hydrodynamic models for kinetic equations, Proc. Natl. Acad. Sci., 116, 44, 21983-21991 (2019) · Zbl 1431.76100
[20] Hauck, C.; McClarren, R., Positive \(P_N\) closures, SIAM J. Sci. Comput., 32, 5, 2603-2626 (2010) · Zbl 1385.70034
[21] Hauck, C. D., High-order entropy-based closures for linear transport in slab geometry, Commun. Math. Sci., 9, 1, 187-205 (2011) · Zbl 1284.82050
[22] Higham, C. F.; Higham, D. J., Deep learning: an introduction for applied mathematicians, SIAM Rev., 61, 4, 860-891 (2019) · Zbl 1440.68214
[23] Huang, J.; Cheng, Y.; Christlieb, A. J.; Roberts, L. F., Machine learning moment closure models for the radiative transfer equation III: Enforcing hyperbolicity and physical characteristic speeds (2021), arXiv preprint
[24] Huang, J.; Cheng, Y.; Christlieb, A. J.; Roberts, L. F.; Yong, W.-A., Machine learning moment closure models for the radiative transfer equation II: enforcing global hyperbolicity in gradient based closures (2021), arXiv preprint
[25] Huang, J.; Ma, Z.; Zhou, Y.; Yong, W.-A., Learning thermodynamically stable and Galilean invariant partial differential equations for non-equilibrium flows, J. Non-Equilib. Thermodyn. (2021)
[26] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 1, 202-228 (1996) · Zbl 0877.65065
[27] Kim, Y.; Choi, Y.; Widemann, D.; Zohdi, T., A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder (2020), arXiv preprint
[28] Klose, A. D.; Netz, U.; Beuthan, J.; Hielscher, A. H., Optical tomography using the time-independent equation of radiative transfer—Part 1: Forward model, J. Quant. Spectrosc. Radiat. Transf., 72, 5, 691-713 (2002)
[29] Koch, R.; Becker, R., Evaluation of quadrature schemes for the discrete ordinates method, J. Quant. Spectrosc. Radiat. Transf., 84, 4, 423-435 (2004)
[30] Koellermeier, J.; Castro, M., High-order non-conservative simulation of hyperbolic moment models in partially-conservative form, East Asian J. Appl. Math. (2021) · Zbl 1475.65093
[31] Koellermeier, J.; Torrilhon, M., Numerical study of partially conservative moment equations in kinetic theory, Commun. Comput. Phys., 21, 4, 981-1011 (2017) · Zbl 1373.82079
[32] Laboure, V. M.; McClarren, R. G.; Hauck, C. D., Implicit filtered \(P_N\) for high-energy density thermal radiation transport using discontinuous Galerkin finite elements, J. Comput. Phys., 321, 624-643 (2016) · Zbl 1349.65454
[33] Larsen, E.; Morel, J., Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes ii, J. Comput. Phys., 83, 1 (1989) · Zbl 0684.65118
[34] Larsen, E. W.; Morel, J. E., Advances in discrete-ordinates methodology, (Nuclear Computational Science (2010)), 1-84
[35] LeCun, Y.; Bengio, Y.; Hinton, G., Deep learning, Nature, 521, 7553, 436-444 (2015)
[36] Lee, K.; Carlberg, K., Deep conservation: a latent-dynamics model for exact satisfaction of physical conservation laws (2019), arXiv preprint
[37] Lee, K.; Carlberg, K. T., Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders, J. Comput. Phys., 404, Article 108973 pp. (2020) · Zbl 1454.65184
[38] Levermore, C., Relating Eddington factors to flux limiters, J. Quant. Spectrosc. Radiat. Transf., 31, 2, 149-160 (1984)
[39] Levermore, C. D., Moment closure hierarchies for kinetic theories, J. Stat. Phys., 83, 5, 1021-1065 (1996) · Zbl 1081.82619
[40] Li, R.; Lee, E.; Luo, T., Physics-informed neural networks for solving multiscale mode-resolved phonon Boltzmann transport equation (2021), arXiv preprint
[41] Li, R.; Li, W.; Zheng, L., Direct flux gradient approximation to close moment model for kinetic equations (2021), arXiv preprint
[42] Lou, Q.; Meng, X.; Karniadakis, G. E., Physics-informed neural networks for solving forward and inverse flow problems via the Boltzmann-BGK formulation (2020), arXiv preprint
[43] Ma, C.; Zhu, B.; Xu, X.-Q.; Wang, W., Machine learning surrogate models for Landau fluid closure, Phys. Plasmas, 27, 4, Article 042502 pp. (2020)
[44] Maulik, R.; Garland, N. A.; Burby, J. W.; Tang, X.-Z.; Balaprakash, P., Neural network representability of fully ionized plasma fluid model closures, Phys. Plasmas, 27, 7, Article 072106 pp. (2020)
[45] McClarren, R. G.; Hauck, C. D., Robust and accurate filtered spherical harmonics expansions for radiative transfer, J. Comput. Phys., 229, 16, 5597-5614 (2010) · Zbl 1193.82043
[46] Mishra, S.; Molinaro, R., Physics informed neural networks for simulating radiative transfer (2020), arXiv preprint
[47] Murchikova, E.; Abdikamalov, E.; Urbatsch, T., Analytic closures for M1 neutrino transport, Mon. Not. R. Astron. Soc., 469, 2, 1725-1737 (2017)
[48] Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.; Chintala, S., Pytorch: an imperative style, high-performance deep learning library (2019), arXiv preprint
[49] Peng, Z.; Chen, Y.; Cheng, Y.; Li, F., A reduced basis method for radiative transfer equation (2021), arXiv preprint
[50] Pomraning, G. C., The Equations of Radiation Hydrodynamics (1973), Pergamon Press: Pergamon Press Oxford, UK
[51] Radice, D.; Abdikamalov, E.; Rezzolla, L.; Ott, C. D., A new spherical harmonics scheme for multi-dimensional radiation transport I. Static matter configurations, J. Comput. Phys., 242, 648-669 (2013) · Zbl 1310.85002
[52] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707 (2019) · Zbl 1415.68175
[53] Rim, D.; Venturi, L.; Bruna, J.; Peherstorfer, B., Depth separation for reduced deep networks in nonlinear model reduction: distilling shock waves in nonlinear hyperbolic problems (2020), arXiv preprint
[54] Scoggins, J. B.; Han, J.; Massot, M., Machine learning moment closures for accurate and efficient simulation of polydisperse evaporating sprays, (AIAA Scitech 2021 Forum (2021)), 1786
[55] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 2, 439-471 (1988) · Zbl 0653.65072
[56] Spurr, R.; Kurosu, T.; Chance, K., A linearized discrete ordinate radiative transfer model for atmospheric remote-sensing retrieval, J. Quant. Spectrosc. Radiat. Transf., 68, 6, 689-735 (2001)
[57] Tencer, J.; Carlberg, K.; Hogan, R.; Larsen, M., Reduced order modeling applied to the discrete ordinates method for radiation heat transfer in participating media, (ASME 2016 Heat Transfer Summer Conference Collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels (2016), American Society of Mechanical Engineers Digital Collection)
[58] Wang, L.; Xu, X.; Zhu, B.; Ma, C.; Lei, Y.-A., Deep learning surrogate model for kinetic Landau-fluid closure with collision, AIP Adv., 10, 7, Article 075108 pp. (2020)
[59] Xiao, T.; Frank, M., Using neural networks to accelerate the solution of the Boltzmann equation (2020), arXiv preprint
[60] Zhang, L.; Han, J.; Wang, H.; Car, R.; E, W., Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics, Phys. Rev. Lett., 120, 14, Article 143001 pp. (2018)
[61] Zhu, Y.; Hong, L.; Yang, Z.; Yong, W.-A., Conservation-dissipation formalism of irreversible thermodynamics, J. Non-Equilib. Thermodyn., 40, 2, 67-74 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.