×

Traveling spiral wave chimeras in coupled oscillator systems: emergence, dynamics, and transitions. (English) Zbl 07869258

Summary: Systems of coupled nonlinear oscillators often exhibit states of partial synchrony in which some of the oscillators oscillate coherently while the rest remain incoherent. If such a state emerges spontaneously, in other words, if it cannot be associated with any heterogeneity in the system, it is generally referred to as a chimera state. In planar oscillator arrays, these chimera states can take the form of rotating spiral waves surrounding an incoherent core, resembling those observed in oscillatory or excitable media, and may display complex dynamical behavior. To understand this behavior we study stationary and moving chimera states in planar phase oscillator arrays using a combination of direct numerical simulations and numerical continuation of solutions of the corresponding continuum limit, focusing on the existence and properties of traveling spiral wave chimeras as a function of the system parameters. The oscillators are coupled nonlocally and their frequencies are drawn from a Lorentzian distribution. Two cases are discussed in detail, that of a top-hat coupling function and a two-parameter truncated Fourier approximation to this function in Cartesian coordinates. The latter allows semi-analytical progress, including determination of stability properties, leading to a classification of possible behaviors of both static and moving chimera states. The transition from stationary to moving chimeras is shown to be accompanied by the appearance of complex filamentary structures within the incoherent spiral wave core representing secondary coherence regions associated with temporal resonances. As the parameters are varied the number of such filaments may grow, a process reflected in a series of folds in the corresponding bifurcation diagram showing the drift speed \(s\) as a function of the phase-lag parameter \(\alpha \).
{© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft}

MSC:

81-XX Quantum theory
82-XX Statistical mechanics, structure of matter
83-XX Relativity and gravitational theory

References:

[1] Huygens, C., Christiaan Huygens’ The Pendulum Clock, or, Geometrical Demonstrations Concerning the Motion of Pendula as Applied to Clocks (1986), Iowa State University Press
[2] Bennett, M.; Schatz, M. F.; Rockwood, H.; Wiesenfeld, K., Proc. R. Soc. A, 458, 563-79 (2002) · Zbl 1026.01007 · doi:10.1098/rspa.2001.0888
[3] Sakaguchi, H., Phys. Rev. E, 73 (2006) · doi:10.1103/PhysRevE.73.031907
[4] Luke, T. B.; Barreto, E.; So, P., Neural Comput., 25, 3207-34 (2013) · Zbl 1448.92046 · doi:10.1162/NECO_a_00525
[5] Omel’chenko, O.; Laing, C. R., Proc. R. Soc. A, 478 (2022) · doi:10.1098/rspa.2021.0817
[6] Uchida, N.; Golestanian, R., Phys. Rev. Lett., 104 (2010) · doi:10.1103/PhysRevLett.104.178103
[7] Golestanian, R.; Yeomans, J. M.; Uchida, N., Soft Matter, 7, 3074-82 (2011) · doi:10.1039/c0sm01121e
[8] Nkomo, S.; Tinsley, M. R.; Showalter, K., Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.244102
[9] Totz, J. F.; Rode, J.; Tinsley, M. R.; Showalter, K.; Engel, H., Nat. Phys., 14, 282-5 (2017) · doi:10.1038/s41567-017-0005-8
[10] Guo, S.; Dai, Q.; Cheng, H.; Li, H.; Xie, F.; Yang, J., Chaos Solitons Fractals, 114, 394-9 (2018) · Zbl 1415.34070 · doi:10.1016/j.chaos.2018.07.029
[11] Rode, J.; Totz, J. F.; Fengler, E.; Engel, H., Front. Appl. Math. Stat., 5, 31 (2019) · doi:10.3389/fams.2019.00031
[12] Adler, R., Proc. IRE, 34, 351-7 (1946) · doi:10.1109/JRPROC.1946.229930
[13] Wang, S. S.; Winful, H. G., Appl. Phys. Lett., 52, 1774-6 (1988) · doi:10.1063/1.99622
[14] Nishikawa, T.; Motter, A. E., New J. Phys., 17 (2015) · Zbl 1452.91229 · doi:10.1088/1367-2630/17/1/015012
[15] Kuramoto, Y.; Battogtokh, D., Nonlinear Phenom. Complex Syst., 5, 380-5 (2002)
[16] Abrams, D. M.; Strogatz, S. H., Phys. Rev. Lett., 93 (2004) · doi:10.1103/PhysRevLett.93.174102
[17] Panaggio, M. J.; Abrams, D. M., Nonlinearity, 28, R67-R87 (2015) · Zbl 1392.34036 · doi:10.1088/0951-7715/28/3/R67
[18] Schöll, E., Eur. Phys. J. Spec. Top., 225, 891-919 (2016) · doi:10.1140/epjst/e2016-02646-3
[19] Omel’chenko, O. E., Nonlinearity, 31, R121-64 (2018) · Zbl 1395.34045 · doi:10.1088/1361-6544/aaaa07
[20] Majhi, S.; Bera, B. K.; Ghosh, D.; Perc, M., Phys. Life Rev., 28, 100-21 (2019) · doi:10.1016/j.plrev.2018.09.003
[21] Haugland, S. W., J. Phys. Complex., 2 (2021) · doi:10.1088/2632-072X/ac0810
[22] Parastesh, F.; Jafari, S.; Azarnoush, H.; Shahriari, Z.; Wang, Z.; Boccaletti, S.; Perc, M., Phys. Rep., 898, 1-114 (2021) · Zbl 1490.34044 · doi:10.1016/j.physrep.2020.10.003
[23] Xie, J.; Knobloch, E.; Kao, H. C., Phys. Rev. E, 90 (2014) · doi:10.1103/PhysRevE.90.022919
[24] Omel’chenko, O. E., Nonlinearity, 33, 611-42 (2020) · Zbl 1431.34048 · doi:10.1088/1361-6544/ab5cd8
[25] Kuramoto, Y.; Shima, S-I, Prog. Theor. Phys. Suppl., 150, 115-25 (2003) · doi:10.1143/PTPS.150.115
[26] Shima, S-I; Kuramoto, Y., Phys. Rev. E, 69 (2004) · doi:10.1103/PhysRevE.69.036213
[27] Nicolaou, Z. G.; Riecke, H.; Motter, A. E., Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.244101
[28] Aranson, I. S.; Kramer, L., Rev. Mod. Phys., 74, 99-143 (2002) · Zbl 1205.35299 · doi:10.1103/RevModPhys.74.99
[29] Barkley, D., Phys. Rev. Lett., 68, 2090-3 (1992) · doi:10.1103/PhysRevLett.68.2090
[30] Chaté, H.; Manneville, P., Physica A, 224, 348-68 (1996) · doi:10.1016/0378-4371(95)00361-4
[31] Omel’chenko, O. E.; Wolfrum, M.; Knobloch, E., SIAM J. Appl. Dyn. Syst., 17, 97-127 (2018) · Zbl 1386.37047 · doi:10.1137/17M1141151
[32] Omel’chenko, O. E.; Wolfrum, M.; Yanchuk, S.; Maistrenko, Y. L.; Sudakov, O., Phys. Rev. E, 85 (2012) · doi:10.1103/PhysRevE.85.036210
[33] Silber, M.; Knobloch, E., Nonlinearity, 4, 1063-107 (1991) · Zbl 0753.58021 · doi:10.1088/0951-7715/4/4/003
[34] Maistrenko, Y.; Sudakov, O.; Osiv, O.; Maistrenko, V., New J. Phys., 17 (2015) · doi:10.1088/1367-2630/17/7/073037
[35] Xie, J.; Knobloch, E.; Kao, H. C., Phys. Rev. E, 92 (2015) · doi:10.1103/PhysRevE.92.042921
[36] Omel’chenko, O. E.; Knobloch, E., New J. Phys., 21 (2019) · doi:10.1088/1367-2630/ab3f6b
[37] Bi, H.; Fukai, T., Chaos, 32 (2022) · Zbl 07876567 · doi:10.1063/5.0096284
[38] Ulonska, S.; Omelchenko, I.; Zakharova, A.; Schöll, E., Chaos, 26 (2016) · doi:10.1063/1.4962913
[39] Hagerstrom, A. M.; Murphy, T. E.; Roy, R.; Hövel, P.; Omelchenko, I.; Schöll, E., Nature Phys., 8, 658-61 (2012) · doi:10.1038/nphys2372
[40] Wickramasinghe, M.; Kiss, I. Z., PLoS One, 8 (2013) · doi:10.1371/journal.pone.0080586
[41] Kapitaniak, T.; Kuzma, P.; Wojewoda, J.; Czolczynski, K.; Maistrenko, Y., Sci. Rep., 4, 6379 (2014) · doi:10.1038/srep06379
[42] Rosin, D. P.; Rontani, D.; Haynes, N. D.; Schöll, E.; Gauthier, D. J., Phys. Rev. E, 90 (2014) · doi:10.1103/PhysRevE.90.030902
[43] Omel’chenko, O. E.; Wolfrum, M.; Maistrenko, Y. L., Phys. Rev. E, 81 (2010) · doi:10.1103/PhysRevE.81.065201
[44] Ott, E.; Antonsen, T. M., Chaos, 18 (2008) · Zbl 1309.34058 · doi:10.1063/1.2930766
[45] Omel’chenko, O. E., Nonlinearity, 26, 2469-98 (2013) · Zbl 1281.34051 · doi:10.1088/0951-7715/26/9/2469
[46] Omel’chenko, O. E., J. Phys. A: Math. Theor., 52 (2019) · Zbl 1507.35068 · doi:10.1088/1751-8121/ab0043
[47] Bataille-Gonzalez, M.; Clerc, M. G.; Omel’chenko, O. E., Phys. Rev. E, 104 (2021) · doi:10.1103/PhysRevE.104.L022203
[48] Firth, W. J.; Columbo, L.; Scroggie, A. J., Phys. Rev. Lett., 99 (2007) · doi:10.1103/PhysRevLett.99.104503
[49] Firth, W. J.; Columbo, L.; Maggipinto, T., Chaos, 17 (2007) · Zbl 1163.37324 · doi:10.1063/1.2768157
[50] Barbay, S.; Hachair, X.; Elsass, T.; Sagnes, I.; Kuszelewicz, R., Phys. Rev. Lett., 101 (2008) · doi:10.1103/PhysRevLett.101.253902
[51] Thiele, U.; Archer, A. J.; Robbins, M. J.; Gomez, H.; Knobloch, E., Phys. Rev. E, 87 (2013) · doi:10.1103/PhysRevE.87.042915
[52] Pradenas, B.; Araya, I.; Clerc, M. G.; Falcón, C.; Gandhi, P.; Knobloch, E., Phys. Rev. Fluids, 2 (2017) · doi:10.1103/PhysRevFluids.2.064401
[53] See supplementary material for animations of a moving spiral wave chimera and the solution snapshots along the bifurcation diagram in figure 3
[54] Laing, C. R., Physica D, 238, 1569-88 (2009) · Zbl 1185.34042 · doi:10.1016/j.physd.2009.04.012
[55] Laing, C. R., SIAM J. Appl. Dyn. Syst., 16, 974-1014 (2017) · Zbl 1392.34035 · doi:10.1137/16M1086662
[56] Omel’chenko, O. E., Nonlinearity, 36, 845-61 (2023) · Zbl 1514.34063 · doi:10.1088/1361-6544/aca94c
[57] Omel’chenko, O. E.; Wolfrum, M.; Laing, C. R., Chaos, 24 (2014) · Zbl 1345.34061 · doi:10.1063/1.4870259
[58] Lee, W. S.; Restrepo, J. G.; Ott, E.; Antonsen, T. M., Chaos, 21 (2011) · Zbl 1317.34060 · doi:10.1063/1.3596697
[59] Huang, X.; Troy, W. C.; Yang, Q.; Ma, H.; Laing, C. R.; Schiff, S. J.; Wu, J. Y., J. Neurosci., 24, 9897-902 (2004) · doi:10.1523/JNEUROSCI.2705-04.2004
[60] Huang, X.; Xu, W.; Liang, J.; Takagaki, K.; Gao, X.; Wu, J. Y., Neuron, 68, 978-90 (2010) · doi:10.1016/j.neuron.2010.11.007
[61] Clayton, R. H.; Bernus, O.; Cherry, E. M.; Dierckx, H.; Fenton, F. H.; Mirabella, L.; Panfilov, A. V.; Sachse, F. B.; Seemann, G.; Zhang, H., Prog. Biophys. Mol. Biol., 104, 22-48 (2011) · doi:10.1016/j.pbiomolbio.2010.05.008
[62] Barbay, S.; Kuszelewicz, R.; Yacomotti, A. M., Opt. Lett., 36, 4476-8 (2011) · doi:10.1364/OL.36.004476
[63] Selmi, F.; Braive, R.; Beaudoin, G.; Sagnes, I.; Kuszelewicz, R.; Barbay, S., Phys. Rev. Lett., 112 (2014) · doi:10.1103/PhysRevLett.112.183902
[64] Marino, F.; Balle, S., Phys. Rev. Lett., 94 (2005) · doi:10.1103/PhysRevLett.94.094101
[65] Marino, F.; Giacomelli, G., Phys. Rev. Lett., 122 (2019) · doi:10.1103/PhysRevLett.122.174102
[66] Makinwa, T., Commun. Phys., 6, 121 (2023) · doi:10.1038/s42005-023-01240-x
[67] Lau, H. W H.; Davidsen, J.; Simon, C., Sci. Rep., 13, 8590 (2023) · doi:10.1038/s41598-023-35061-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.