×

Chimeras in two-dimensional domains: heterogeneity and the continuum limit. (English) Zbl 1392.34035

The author considers three different two-dimensional networks of nonlocally coupled heterogeneous phase oscillators. Taking the continuum limit of an infinite number of oscillators and using the Ott-Antonsen ansatz he derives the following integrodifferential equation for order parameter-like quantity \(z(\mathbf{r},t)\) \[ \frac{\partial z(\mathbf{r},t)}{\partial t} = - \delta z(\mathbf{r},t) + \frac{1}{2} e^{-i \alpha} \mathcal{G} Z - \frac{1}{2} e^{i \alpha} z^2(\mathbf{r},t) \mathcal{G} \overline{z},\quad (\mathbf{r},t)\in\mathcal{M}\times[0,\infty), \] where \(\mathcal{M}\) is a two-dimensional manifold (e.g. a sphere or a flat torus), \(\delta > 0\) and \(|\alpha|<\pi/2\) are parameters, and \[ (\mathcal{G} z)(\mathbf{r},t) = \int_\mathcal{M} G(\mathbf{r},\mathbf{r'}) z(\mathbf{r'},t) d\mathbf{r'} \] is an integral operator with a specific kernel \(G:\mathcal{M}\times\mathcal{M}\to\mathbb{R}\). For this equation the author carries out numerical investigation of relative fixed points, which represent different coherence-incoherence patterns, also called chimera states. Thus, he obtains stability diagrams for stripe, spot and spiral chimera states and identifies the bifurcations involved in their loss of stability as parameters are varied.

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34D06 Synchronization of solutions to ordinary differential equations
45K05 Integro-partial differential equations
Full Text: DOI

References:

[1] D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, {\it Solvable model for chimera states of coupled oscillators}, Phys. Rev. Lett., 101 (2008), 084103.
[2] D. M. Abrams and S. H. Strogatz, {\it Chimera states for coupled oscillators}, Phys. Rev. Lett., 93 (2004), 174102. · Zbl 1101.37319
[3] D. M. Abrams and S. H. Strogatz, {\it Chimera states in a ring of nonlocally coupled oscillators}, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), pp. 21-37. · Zbl 1101.37319
[4] P. Ashwin and O. Burylko, {\it Weak chimeras in minimal networks of coupled phase oscillators}, Chaos, 25 (2015), 013106. · Zbl 1345.34052
[5] P. J. Aston and C. R. Laing, {\it Symmetry and chaos in the complex Ginzburg-Landau equation - \textupI. Reflectional symmetries}, Dynam. Stability Systems, 14 (1999), pp. 233-253. · Zbl 0936.35025
[6] G. Barlev, T. M. Antonsen, and E. Ott, {\it The dynamics of network coupled phase oscillators: An ensemble approach}, Chaos, 21 (2011), 025103. · Zbl 1317.34049
[7] G. Bordyugov, A. Pikovsky, and M. Rosenblum, {\it Self-emerging and turbulent chimeras in oscillator chains}, Phys. Rev. E, 82 (2010), 035205.
[8] D. A. Calhoun, C. Helzel, and R. J. LeVeque, {\it Logically rectangular grids and finite volume methods for PDEs in circular and spherical domains}, SIAM Rev., 50 (2008), pp. 723-752, . · Zbl 1155.65061
[9] S. Coombes and Á. Byrne, {\it Next generation neural mass models}, in Nonlinear Dynamics in Computational Neuroscience: From Physics and Biology to ICT, A. Torcini and F. Corinth, eds., Springer, Berlin, 2016. Preprint version available at .
[10] E. Doedel, H. B. Keller, and J. P. Kernevez, {\it Numerical analysis and control of bifurcation problems \textup(I): Bifurcation in finite dimensions}, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1 (1991), pp. 493-520. · Zbl 0876.65032
[11] M. Golubitsky and D. G. Schaeffer, {\it Singularities and Groups in Bifurcation Theory}, Appl. Math. Sci. 51, Springer, Berlin, 1985. · Zbl 0607.35004
[12] I. S. Gradshtejn and I. M. Ryzhik, {\it Table of Integrals, Series and Products}, Academic Press, New York, 1965. · Zbl 0448.65002
[13] C. Gu, G. St-Yves, and J. Davidsen, {\it Spiral wave chimeras in complex oscillatory and chaotic systems}, Phys. Rev. Lett., 111 (2013), 134101.
[14] A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, and E. Schöll, {\it Experimental observation of chimeras in coupled-map lattices}, Nature Phys., 8 (2012), pp. 658-661.
[15] Y. Kawamura, {\it Chimera Ising walls in forced nonlocally coupled oscillators}, Phys. Rev. E, 75 (2007), 056204.
[16] P.-J. Kim, T.-W. Ko, H. Jeong, and H.-T. Moon, {\it Pattern formation in a two-dimensional array of oscillators with phase-shifted coupling}, Phys. Rev. E, 70 (2004), 065201.
[17] Y. Kuramoto, {\it Chemical Oscillations, Waves, and Turbulence}, Springer, Berlin, 1984. · Zbl 0558.76051
[18] Y. Kuramoto and D. Battogtokh, {\it Coexistence of coherence and incoherence in nonlocally coupled phase oscillators}, Nonlinear Phenom. Complex Syst., 5 (2002), pp. 380-385.
[19] Y. Kuramoto and S. Shima, {\it Rotating spirals without phase singularity in reaction-diffusion systems}, Progr. Theor. Phys. Suppl., 150 (2003), pp. 115-125.
[20] C. R. Laing, {\it Chimera states in heterogeneous networks}, Chaos, 19 (2009), 013113. · Zbl 1311.34080
[21] C. R. Laing, {\it The dynamics of chimera states in heterogeneous Kuramoto networks}, Phys. D, 238 (2009), pp. 1569-1588. · Zbl 1185.34042
[22] C. R. Laing, {\it Chimeras in networks of planar oscillators}, Phys. Rev. E, 81 (2010), 066221.
[23] C. R. Laing, {\it Fronts and bumps in spatially extended Kuramoto networks}, Phys. D, 240 (2011), pp. 1960-1971. · Zbl 1262.34038
[24] C. R. Laing, {\it Disorder-induced dynamics in a pair of coupled heterogeneous phase oscillator networks}, Chaos, 22 (2012), 043104. · Zbl 1319.34057
[25] C. R. Laing, {\it Derivation of a neural field model from a network of theta neurons}, Phys. Rev. E, 90 (2014), 010901.
[26] C. R. Laing, {\it Numerical bifurcation theory for high-dimensional neural models}, J. Math. Neurosci., 4 (2014), 13. · Zbl 1333.92018
[27] C. R. Laing, {\it Chimeras in networks with purely local coupling}, Phys. Rev. E, 92 (2015), 050904.
[28] C. R. Laing, {\it Exact neural fields incorporating gap junctions}, SIAM J. Appl. Dyn. Syst., 14 (2015), pp. 1899-1929, . · Zbl 1369.92020
[29] C. R. Laing, K. Rajendran, and I. G. Kevrekidis, {\it Chimeras in random non-complete networks of phase oscillators}, Chaos, 22 (2012), 013132. · Zbl 1331.34055
[30] H. W. Lau and J. Davidsen, {\it Linked and knotted chimera filaments in oscillatory systems}, Phys. Rev. E, 94 (2016), 010204.
[31] W. S. Lee, J. G. Restrepo, E. Ott, and T. M. Antonsen, {\it Dynamics and pattern formation in large systems of spatially-coupled oscillators with finite response times}, Chaos, 21 (2011), 023122. · Zbl 1317.34060
[32] B.-W. Li and H. Dierckx, {\it Spiral wave chimeras in locally coupled oscillator systems}, Phys. Rev. E, 93 (2016), 020202.
[33] T. B. Luke, E. Barreto, and P. So, {\it Complete classification of the macroscopic behavior of a heterogeneous network of theta neurons}, Neural Comput., 25 (2013), pp. 3207-3234. · Zbl 1448.92046
[34] Y. Maistrenko, O. Sudakov, O. Osiv, and V. Maistrenko, {\it Chimera states in three dimensions}, New J. Phys., 17 (2015), 073037. · Zbl 1450.37068
[35] K. Maleček and Z. Nádeník, {\it On the inductive proof of Legendre addition theorem}, Stud. Geophys. Geod., 45 (2001), pp. 1-11.
[36] E. A. Martens, {\it Bistable chimera attractors on a triangular network of oscillator populations}, Phys. Rev. E, 82 (2010), 016216.
[37] E. A. Martens, C. R. Laing, and S. H. Strogatz, {\it Solvable model of spiral wave chimeras}, Phys. Rev. Lett., 104 (2010), 044101.
[38] E. A. Martens, S. Thutupalli, A. Fourrière, and O. Hallatschek, {\it Chimera states in mechanical oscillator networks}, Proc. Natl. Acad. Sci. USA, 110 (2013), pp. 10563-10567.
[39] S. Nkomo, M. R. Tinsley, and K. Showalter, {\it Chimera states in populations of nonlocally coupled chemical oscillators}, Phys. Rev. Lett., 110 (2013), 244102.
[40] O. E. Omel’chenko, Y. L. Maistrenko, and P. A. Tass, {\it Chimera states: The natural link between coherence and incoherence}, Phys. Rev. Lett., 100 (2008), 044105.
[41] O. Omel’chenko, M. Wolfrum, and C. R. Laing, {\it Partially coherent twisted states in arrays of coupled phase oscillators}, Chaos, 24 (2014), 023102. · Zbl 1345.34061
[42] O. E. Omel’chenko, {\it Coherence-incoherence patterns in a ring of non-locally coupled phase oscillators}, Nonlinearity, 26 (2013), pp. 2469-2498. · Zbl 1281.34051
[43] O. E. Omel’chenko, M. Wolfrum, and Y. L. Maistrenko, {\it Chimera states as chaotic spatiotemporal patterns}, Phys. Rev. E, 81 (2010), 065201.
[44] O. E. Omel’chenko, M. Wolfrum, S. Yanchuk, Y. L. Maistrenko, and O. Sudakov, {\it Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally-coupled phase oscillators}, Phys. Rev. E, 85 (2012), 036210.
[45] E. Ott and T. M. Antonsen, {\it Low dimensional behavior of large systems of globally coupled oscillators}, Chaos, 18 (2008), 037113. · Zbl 1309.34058
[46] E. Ott and T. M. Antonsen, {\it Long time evolution of phase oscillator systems}, Chaos, 19 (2009), 023117. · Zbl 1309.34059
[47] M. J. Panaggio and D. M. Abrams, {\it Chimera states on a flat torus}, Phys. Rev. Lett., 110 (2013), 094102.
[48] M. J. Panaggio and D. M. Abrams, {\it Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators}, Nonlinearity, 28 (2015), R67. · Zbl 1392.34036
[49] M. J. Panaggio and D. M. Abrams, {\it Chimera states on the surface of a sphere}, Phys. Rev. E, 91 (2015), 022909. · Zbl 1392.34036
[50] M. J. Panaggio, D. M. Abrams, P. Ashwin, and C. R. Laing, {\it Chimera states in networks of phase oscillators: The case of two small populations}, Phys. Rev. E, 93 (2016), 012218.
[51] D. Pazó and E. Montbrió, {\it Low-dimensional dynamics of populations of pulse-coupled oscillators}, Phys. Rev. X, 4 (2014), 011009.
[52] A. Pikovsky and M. Rosenblum, {\it Partially integrable dynamics of hierarchical populations of coupled oscillators}, Phys. Rev. Lett., 101 (2008), 264103. · Zbl 1153.37403
[53] B. Sandstede, A. Scheel, and C. Wulff, {\it Bifurcations and dynamics of spiral waves}, J. Nonlinear Sci., 9 (1999), pp. 439-478. · Zbl 0951.35014
[54] A. Scheel, {\it Bifurcation to spiral waves in reaction-diffusion systems}, SIAM J. Math. Anal., 29 (1998), pp. 1399-1418, . · Zbl 0928.35017
[55] G. C. Sethia, A. Sen, and F. M. Atay, {\it Clustered chimera states in delay-coupled oscillator systems}, Phys. Rev. Lett., 100 (2008), 144102.
[56] G. C. Sethia, A. Sen, and G. L. Johnston, {\it Amplitude-mediated chimera states}, Phys. Rev. E, 88 (2013), 042917.
[57] S. Shima and Y. Kuramoto, {\it Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators}, Phys. Rev. E, 69 (2004), 036213.
[58] S. H. Strogatz, {\it From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators}, Phys. D, 143 (2000), pp. 1-20. · Zbl 0983.34022
[59] M. R. Tinsley, S. Nkomo, and K. Showalter, {\it Chimera and phase-cluster states in populations of coupled chemical oscillators}, Nature Physics, 8 (2012), pp. 662-665.
[60] L. C. Udeigwe and G. B. Ermentrout, {\it Waves and patterns on regular graphs}, SIAM J. Appl. Dyn. Syst., 14 (2015), pp. 1102-1129, . · Zbl 1325.34051
[61] S. Visser, R. Nicks, O. Faugeras, and S. Coombes, {\it Standing and travelling waves in a spherical brain model: The Nunez model revisited}, Phys. D, 345 (2017), pp. 27-45, . · Zbl 1376.92014
[62] S. Watanabe and S. H. Strogatz, {\it Integrability of a globally coupled oscillator array}, Phys. Rev. Lett., 70 (1993), pp. 2391-2394. · Zbl 1063.34505
[63] S. Watanabe and S. H. Strogatz, {\it Constants of motion for superconducting Josephson arrays}, Phys. D, 74 (1994), pp. 197-253. · Zbl 0812.34043
[64] M. Wolfrum and O. E. Omel’chenko, {\it Chimera states are chaotic transients}, Phys. Rev. E, 84 (2011), 015201.
[65] M. Wolfrum, O. E. Omel’chenko, S. Yanchuk, and Y. L. Maistrenko, {\it Spectral properties of chimera states}, Chaos, 21 (2011), 013112. · Zbl 1345.34067
[66] J. Xie, E. Knobloch, and H.-C. Kao, {\it Twisted chimera states and multicore spiral chimera states on a two-dimensional torus}, Phys. Rev. E, 92 (2015), 042921.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.