×

Factorization of equilibrium equation in Toupin-Mindlin strain-gradient elasticity in quaternion analysis. (English) Zbl 07867691

Summary: In this paper, we introduce a factorization of the equilibrium equation in the theory of Toupin-Mindlin strain-gradient elasticity in the framework of quaternion analysis by using the inframonogenic operator \(\mathcal{F}u = DuD\) and the Dirac operator of mixed sides \(D_au = \cos aDu + \sin auD\), where \(D\) is the Dirac operator in \(\mathbb{R}^3\). We construct some integral representation formulae for the displacement fields. In application, we obtain a decomposition formula of the displacement fields.

MSC:

74B99 Elastic materials
15B33 Matrices over special rings (quaternions, finite fields, etc.)
Full Text: DOI

References:

[1] Blaya, RA; Reyes, JB; Herrera Peláez, M.; Sigarreta, J., Integral representation formulas related to the Lame-Navier system, Acta Math. Sin. Engl. Ser., 36, 1341-1356, 2020 · Zbl 1461.30110 · doi:10.1007/s10114-020-9332-2
[2] Blaya, RA; Reyes, JB; Moreno Garcıa, A., A Cauchy integral formula for infrapolymonogenic functions in Clifford analysis, Adv. Appl. Clifford Algebras, 30, 21, 2020 · Zbl 1435.30136 · doi:10.1007/s00006-020-1049-x
[3] Bock, S., On monogenic series expansions with applications to linear elasticity, Adv. Appl. Clifford Algebras, 24, 931-943, 2014 · Zbl 1310.33007 · doi:10.1007/s00006-014-0490-0
[4] Bock, S.; Gürlebeck, K., On a polynomial basis generated from the generalized Kolosov-Muskhelishvili formulae, Adv. Appl. Clifford Algebras, 19, 191-209, 2009 · Zbl 1172.30022 · doi:10.1007/s00006-009-0156-5
[5] Bock, S.; Gürlebeck, K., On a spatial generalization of the Kolosov-Muskhelishvili formulae, Math. Methods Appl. Sci., 32, 223-240, 2009 · Zbl 1151.74308 · doi:10.1002/mma.1033
[6] Bock, S.; Gürlebeck, K.; Legatiuk, D.; Nguyen, HM, \( \Psi \)-hyperholomorphic functions and a Kolosov-Muskhelishvili formula, Math. Methods Appl. Sci., 38, 18, 5114-5123, 2015 · Zbl 1338.30043 · doi:10.1002/mma.3431
[7] Dinh, DC, Somigliana formula in quaternion analysis, Mech. Res. Commun., 126, 2022 · doi:10.1016/j.mechrescom.2022.104018
[8] Dinh, DC, Applications of endomorphisms on Clifford Algebras to \((\alpha,\beta )\) -monogenic functions and isotonic functions, Complex Anal. Oper. Theory, 17, 21, 2023 · Zbl 1514.15032 · doi:10.1007/s11785-022-01326-4
[9] Dinh, DC, Iterated generalized Dirac operators of mixed sides, Bol. Soc. Mat. Mex., 30, 23, 2024 · Zbl 1541.15023 · doi:10.1007/s40590-024-00603-w
[10] Grigor’ev, Y.; Bernstein, S.; Kähler, U.; Sabadini, I.; Sommen, F., Three-dimensional analogue of Kolosov-Muskhelishvili formulae, Modern Trends in Hypercomplex Analysis, Trends in Mathematics, 203-215, 2016, Cham: Birkhäuser, Cham · Zbl 1388.30073 · doi:10.1007/978-3-319-42529-0_11
[11] Gürlebeck, K., Sprössig, W.: Quaternionic analysis and elliptic boundary value problems. In: International Series of Numerical Mathematics, vol. 89, Birkhauser Verlag, Basel (1990) · Zbl 0850.35001
[12] Gürlebeck, K.; Nguyen, HM, \( \Psi \)-Hyperholomorphic functions and an application to elasticity problems, AIP Confer. Proc., 1648, 1, 2015 · doi:10.1063/1.4912656
[13] Gürlebeck, K.; Habetha, K.; Sprößig, W., Holomorphic Functions in the Plane and \(n\)-Dimensional Space, 2008, Basel: Birkhäuser, Basel · Zbl 1132.30001
[14] Gürlebeck, K.; Habetha, K.; Sprößig, W., Application of Holomorphic Functions in Two and Higher Dimensions, 2016, Birkhäuser Basel: Springer, Switzerland, Birkhäuser Basel · Zbl 1359.30053 · doi:10.1007/978-3-0348-0964-1
[15] Herrera Pelaez, MA; Blaya, RA; Moreno Garcıa, A.; Sigarreta Almira, JM, Integral representation formulas for higher order Dirac equations, J. Math. Anal. Appl., 515, 2, 2022 · Zbl 1493.30100 · doi:10.1016/j.jmaa.2022.126414
[16] Laoues, M., Linear operators in Clifford algebras, Lett. Math. Phys., 23, 325-331, 1991 · Zbl 0749.15016 · doi:10.1007/BF00398830
[17] Lurie, S.; Volkov-Bogorodsky, D.; Leontiev, A.; Aifantis, E., Eshelby’s inclusion problem in the gradient theory of elasticity: applications to composite materials, Int. J. Eng. Sci., 49, 12, 1517-1525, 2011 · Zbl 1423.74049 · doi:10.1016/j.ijengsci.2011.05.001
[18] Malonek, H.; Pena Pena, D.; Sommen, F., Fischer decomposition by inframonogenic functions, Cubo (Temuco)., 12, 189-197, 2010 · Zbl 1217.30047 · doi:10.4067/S0719-06462010000200012
[19] Malonek, H.; Pena Pena, D.; Sommen, F., A Cauchy-Kowalevski theorem for inframonogenic functions, Math. J. Okayama Uni., 53, 167-172, 2011 · Zbl 1235.30031
[20] Mindlin, RD, Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16, 1, 51-78, 1964 · Zbl 0119.40302 · doi:10.1007/BF00248490
[21] Moreno Garcıa, A.; Moreno Garcıa, T.; Abreu Blaya, R.; Bory Reyes, J., A Cauchy integral formula for inframonogenic functions in Clifford analysis, Adv. Appl. Clifford Algebras, 27, 1147-1159, 2017 · Zbl 1369.30063 · doi:10.1007/s00006-016-0745-z
[22] Moreno Garcıa, A.; Moreno Garcıa, T.; Abreu Blaya, R.; Bory Reyes, J., Inframonogenic functions and their applications in 3-dimensional elasticity theory, Math. Methods Appl. Sci., 41, 10, 3622-3631, 2018 · Zbl 1400.30054 · doi:10.1002/mma.4850
[23] Moreno Garcıa, A.; Moreno Garcıa, T.; Abreu Blaya, R.; Bory Reyes, J., Decomposition of inframonogenic functions with applications in elasticity theory, Math. Methods Appl. Sci., 43, 4, 1915-1924, 2020 · Zbl 1446.30077 · doi:10.1002/mma.6015
[24] Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Springer (1977)
[25] Ortner, N., Wagner, P.: Fundamental Solutions of Linear Partial Differential Operators. Springer, Switzerland (2015) · Zbl 1336.35003
[26] Solyaev, Y.; Lurie, S.; Korolenko, V., Three-phase model of particulate composites in second gradient elasticity, Eur. J. Mech. A, Solids, 78, 2019 · Zbl 1477.74022 · doi:10.1016/j.euromechsol.2019.103853
[27] Solyaev, Y.: Complete general solutions for equilibrium equations of isotropic strain gradient elasticity. J. Elast. (2023). doi:10.1007/s10659-
[28] Solyaev, Y.; Lurie, S.; Altenbach, H.; dell’Isola, F., On the elastic wedge problem within simplified and incomplete strain gradient elasticity theories, Int. J. Solids Struct., 239, 2022 · doi:10.1016/j.ijsolstr.2022.111433
[29] Vekua, IN, On metaharmonic functions, Trudy Tbil. Mat. Inst., 12, 105-174, 1943 · Zbl 0063.07996
[30] Waterhouse, W., Linear operators in Clifford algebras, Lett. Math. Phys., 30, 187-188, 1994 · Zbl 0801.15019 · doi:10.1007/BF00805851
[31] Weisz-Patrault, D.; Bock, S.; Gürlebeck, K., Three-dimensional elasticity based on quaternion-valued potentials, Int. J. Solids Struct., 51, 19, 3422-3430, 2014 · doi:10.1016/j.ijsolstr.2014.06.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.