×

Three-dimensional analogue of Kolosov-Muskhelishvili formulae. (English) Zbl 1388.30073

Bernstein, Swanhild (ed.) et al., Modern trends in hypercomplex analysis. Selected papers presented at the session on Clifford and quaternionic analysis at the 10th international ISAAC congress, University of Macau, China, August 3–8, 2015. Basel: Birkhäuser/Springer (ISBN 978-3-319-42528-3/hbk; 978-3-319-42529-0/ebook). Trends in Mathematics, 203-215 (2016).
Summary: In the plane elasticity an effective method of using the holomorphic complex function theory is based on Kolosov-Muskhelishvili formulae. For a three-dimensional case monogenic Clifford functions or regular quaternion functions of a reduced quaternion variable are used. Such functions are solutions of the Moisil-Theodoresco system. In recent papers some variants of three-dimensional Kolosov-Muskhelishvili formulae are obtained but only for star-shaped regions. For applications it is very important to have these formulae for a wider class of domains. We propose the generalized Kolosov-Muskhelishvili formulae in arbitrary simply connected domains with a smooth boundary not only star-shaped, where a notion of harmonic primitive function is used. The method of proving is based on a new theorem about reconstruction of a regular function from a given scalar part.
For the entire collection see [Zbl 1359.30003].

MSC:

30G35 Functions of hypercomplex variables and generalized variables
Full Text: DOI

References:

[1] A.Ya. Aleksandrov and Yu.I. Solov’ev, Three-Dimensional Problems of the Theory of Elasticity [in Russian]. Nauka, Moscow, 1979.
[2] S. Bergman, Integral operators in the theory of linear partial differential equations. Springer-Verlag, Berlin-G¨ottingen-Heidelberg, 1961. · Zbl 0093.28701
[3] A.V. Bitsadze, Boundary value problems for second order elliptic equations. NorthHolland Publ.Co., Amsterdam, 1968. · Zbl 0167.09401
[4] S. Bock and K. G¨urlebeck, On Hypercomplex Differential and Primitivation Operators with Applications to Representation Formulae of Linear Elastostatics. AIP Conference Proceedings, 936 (2007), 717-720. DOI 10.1063/1.2790252 · Zbl 1152.74305
[5] S. Bock and K. G¨urlebeck, On a spatial generalization of the Kolosov-Muskhelishvili formulae. Mathematical Methods in the Applied Sciences, 32, Issue 2 (2009), 223- 240. DOI: 10.1002/mma.1033. · Zbl 1151.74308
[6] S. Bock and K. G¨urlebeck, On a Polynomial Basis Generated from the Generalized Kolosov-Muskhelishvili Formulae. Advances in Applied Clifford Algebras, 19 (2009), 191-209. DOI. 10.1007/s00006-009-0156-5. · Zbl 1172.30022
[7] S. Bock, On Monogenic Series Expansions with Applications to Linear Elasticity. Advances in Applied Clifford Algebras, 24 (2014), 931-943. DOI 10.1007/s00006014-0490-0 · Zbl 1310.33007
[8] S. Bock, K. G¨urlebeck, D. Legatiuk and H.M. Nguyen ψ-Hyperholomorphic functions and a Kolosov-Muskhelishvili formula. Mathematical Methods in the Applied Sciences, 2015. DOI: 10.1002/mma.3431 · Zbl 1338.30043
[9] F. Brackx, R. Delanghe, and F. Sommen,Clifford Analysis, Research Notes in Mathematics No. 76, Pitman, London, 1982. · Zbl 0529.30001
[10] I. Cacao, K. G¨urlebeck, On monogenic primitives of monogenic functions. Complex Variables and Elliptic Equations, 52, no. 10-11 (2007), 1081-1100. DOI: 10.1080/17476930701399088. · Zbl 1148.30027
[11] F. Colombo, I. Sabadini and D.C. Struppa, Slice monogenic functions. Israel J. of Math., 171, No. 1 (2009), 385-403. DOI 10.1007/s11856-009-0055-4. · Zbl 1172.30024
[12] F. Colombo, M.E. Luna-Elizarraras, I. Sabadini, M. Shapiro and D.C. Struppa, A Quaternionic Treatment of the Inhomogeneous Div-Rot System. Moscow Math. J., 12, N. 1, January-March (2012), 37-48. · Zbl 1255.47049
[13] G.M. Fikhtengolts, The Fundamentals of Mathematical Analysis. Pergamon Press, 1965. · Zbl 0132.03401
[14] R. Fueter, ¨Uber die analytischen Darstellungen der regul¨aren Funktionen einer Quaternionenvariablen. Com. Math. Helv., 4 (1932), 9-20. · JFM 58.0144.05
[15] Yu.M. Grigor’ev and V.V. Naumov, Approximation theorems for the Moisil- Theodorescu system. Siberian Mathematical Journal September-October, 25, Issue 5 (1984), 693-701. DOI 10.1007/BF00968681. · Zbl 0581.30043
[16] Yu.M. Grigor’ev, Solution of a problem for an elastic sphere in a closed form. Dynamics of Continuous Medium [in Russian], No. 71 (1985), Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 50-54. · Zbl 0633.73027
[17] Yu.M. Grigor’ev, Solution of spatial problems of an elasticity theory by means of a quaternionic functions theory. Candidat dissertation (PhD) [in Russian], Lavrent’ev Institute of Hydrodynamics, Novosibirsk (1985), 131 pp.
[18] Yu.M. Grigor’ev and V.V. Naumov, Solution of third and fourth main problems of an equilibrium of an elastic sphere in a closed form. Dynamics of Continuous Medium [in Russian], No. 87 (1988), Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 54-66. · Zbl 0703.73014
[19] Yu.M. Grigor’ev and V.V. Naumov, Erratum in: Approximation theorems for the Moisil-Theodorescu system. Siberian Mathematical Journal, September-October, 25, Issue 5 (1984), 693-701. Deposited in VINITI 11.05.89, N 5739-B89 [in Russian]. · Zbl 0581.30043
[20] Yu.M. Grigor’ev and V.V. Alekhin, A quaternionic boundary element method. Sib. jurn. industr. matem. [in Russian], Vol. 2, No. 1 (1999), Inst. Matem. Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 47-52. · Zbl 0983.32003
[21] Yu.M. Grigor’ev, A spatial analogue of the integral equation of Mushelishvili. Dynamics of Continuous Medium [in Russian], No. 114 (1999), Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 161-165. · Zbl 0936.74013
[22] Yu. Grigor’ev, Three-dimensional Quaternionic Analogue of the Kolosov-Muskhelishvili Formulae. Hypercomplex Analysis: New perspectives and applications, Trends in Mathematics, (eds. S. Bernstein, U. Kaehler, I. Sabadini, F. Sommen), Birkh¨auser, Basel (2014), 145-166. DOI 10.1007/978-3-319-08771-9-10. · Zbl 1314.30101
[23] Yu. Grigoriev, Radial integration method in quaternion function theory and its applications. AIP Conference Proceedings, 1648, 440003 (2015), DOI:http://dx.doi.org/ 10.1063/1.4912654
[24] Yu. Grigor’ev, Regular quaternionic functions and their applications. Proceedings of the 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering. Editors: K. G¨urlebeck, T. Lahmer, Weimar, Germany, July 20-22, 2015. Pp. 45-50.
[25] N.M. Gunther, Potential Theory and its Applications to Basic Problems of Mathematical Physics. Frederick Ungar Publishing, New York, 1967. · Zbl 0164.41901
[26] K. G¨urlebeck, K. Habetha and W. Spr¨oßig, Quaternionic Calculus for Engineers and Physicists. John Wiley & Sons, Cinchester, 1997. · Zbl 0897.30023
[27] K. G¨urlebeck and H.R. Malonek A Hypercomplex Derivative of Monogenic Functions in Rn+1and its Applications. Complex Variables, Theory and Applications, 39 (1999), 199-228.DOI 10.1080/17476939908815192. · Zbl 1019.30047
[28] K. G¨urlebeck and W. Spr¨oßig, Holomorphic functions in the plane and n-dimensional space. Birkh¨auser Verlag, 2008. · Zbl 1132.30001
[29] V.V. Kravchenko, Applied quaternionic analysis. Research and Exposition in Mathematics 28 (2003), Lemgo, Heldermann Verlag. · Zbl 1014.78003
[30] M. Ku, U. K¨ahler and D.S. Wang, Riemann boundary value problems on the sphere in Clifford analysis. Advances in Applied Clifford Algebras, 22, Issue 2 (June 2012), 365-390. DOI 10.1007/s00006-011-0308-2. · Zbl 1262.30056
[31] M.E. Luna-Elizarraras, M.A. Macas-Cede˜no, M. Shapiro, On the hyperderivatives of Moisil-Theodoresco hyperholomorphic functions. Hypercomplex Analysis and Applications, Trends in Mathematics, (eds. I. Sabadini and F. Sommen), Springer Basel AG (2011), 181-193. DOI 10.1007/978-3-0346-0246-4-13 · Zbl 1220.30070
[32] M. Misicu, Representarea ecuatilor echilibrului elastic prin functii monogene de cuaterninoni. Bull. Stiint. Acad. RPR. Sect. st. mat.fiz., 9, No. 2 (1957), 457-470. · Zbl 0083.18803
[33] Gr.C. Moisil, N. Theodoresco, Fonctions holomorphes dans l’espace. Mathematica, 5, (1931), 141-153. · Zbl 0003.12101
[34] N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity. Springer, 1977.
[35] V.V. Naumov and Yu.M. Grigor’ev, The Laurent series for the Moisil-Theodoresco system. Dynamics of Continuous Medium [in Russian], No. 54 (1982), Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 115-126. · Zbl 0499.30039
[36] V.V. Naumov, Solution of two main problems of an equilibrium of an elastic sphere in a closed form. Dynamics of Continuous Medium [in Russian], No. 54 (1986), Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 96-108.
[37] D. Weisz-Patrault, S. Bock and K. G¨urlebeck, Three-dimensional elasticity based on quaternion-valued potentials. International Journal of Solids and Structures, 51 (2014), 3422-3430. DOI: 10.1016/j.ijsolstr.2014.06.002
[38] G. Polozij, The Theory and Application of p-analytic and pq-Analytical Functions [in Russian]. Naukova Dumka, Kiev, 1973.
[39] I. Vekua, Generalized Analytic Functions. Addison Wesley, Reading Mass., 1962. · Zbl 0127.03505
[40] J. Schauder, ¨Uber lineare elliptische Differentialgleichungen zweiter Ordnung. Math. Z. 38 (1934), 257-282. · JFM 60.0422.01
[41] A. Sudbery, Quaternionic analysis. Mathematical Proceedings of the Cambridge Philosophical Society, No. 85 (1979), 199-225. · Zbl 0399.30038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.