×

Decomposition of inframonogenic functions with applications in elasticity theory. (English) Zbl 1446.30077

Summary: In this paper, we consider functions satisfying the sandwich equation \(\partial_{\underline{x}} f \partial_{\underline{x}} = 0\), where \(\partial_{\underline{x}}\) stands for the Dirac operator in \(\mathbb{R}^m\). Such functions are referred as inframonogenic and represent an extension of the monogenic functions, i.e., null solutions of \(\partial_{\underline{x}}\).
In particular, for odd \(m\), we prove that a \(C^2\)-function is both inframonogenic and harmonic in \(\operatorname{\Omega} \subset \mathbb{R}^m\) if and only if it can be represented in \(\Omega\) as \[ f = f_1 + f_2 + f_3 \underline{x} + \underline{x} f_4 , \] where \(f_1\) and \(f_2\) are, respectively, left and right monogenic functions in \(\Omega \), while \(f_3\) and \(f_4\) are two-sided monogenic functions there. Finally, in deriving some applications of our results, we have made use of the deep connection between the class of inframonogenic vector fields and the universal solutions of the Lamé-Navier system in \(\mathbb{R}^3\).

MSC:

30G35 Functions of hypercomplex variables and generalized variables
Full Text: DOI

References:

[1] AlmansiE. Sulle integrazione dell equazione differenziale △^2mu=0. Annali di Matematica Pura ed Applicata. 1898;(Suppl. 3).
[2] MalonekH, RenG. Almansi‐type theorems in Clifford analysis. Math Methods Appl Sci. 2002;25(16‐18):1541‐1552. · Zbl 1058.30050
[3] MalonekH, Peña‐PeñaD, SommenF. A Cauchy‐Kowalevski theorem for inframonogenic functions. Math J Okayama Univ. 2011;53:167‐172. · Zbl 1235.30031
[4] MalonekH, Peña‐PeñaD, SommenF. Fischer decomposition by inframonogenic functions. CUBO A Mathe J. 2010;12(02):189‐197. · Zbl 1217.30047
[5] BrackxF, DelangheR, SommenF. Clifford Analysis Research Notes in Mathematics, Vol. 76. Boston:Pitman (Advanced Publishing Program; 1982. · Zbl 0529.30001
[6] Moreno GarcíaA, Moreno GarcíaT, Abreu BlayaR, Bory ReyesJ. A Cauchy integral formula for inframonogenic functions in Clifford analysis. Adv Appl Clifford Algebras. 2017;27(2):1147‐1159. · Zbl 1369.30063
[7] BegehrH. Integral Representations in complex, hypercomplex and Clifford analysis. Integral Transforms and Special Functions, Taylor and Francis Group. 2002;13:05‐316.
[8] BrackxF. On (K)‐Monogenic Functions of a Quaternion Variable, Vol. 8; 1976;22‐44. Res Notes in Math., Pitman, London. · Zbl 0346.30037
[9] RyanJ. Basic Clifford analysis. Cubo Mat Educ. 2000;2:226‐256. · Zbl 1071.30053
[10] BrackxF. Non‐(k)‐monogenic points of functions of a quaternion variable. Funct Theor Meth Part Differ Equa, Proc Int Symp Darmstadt, Lect Notes Math. 1976;561:138‐149. · Zbl 0346.30038
[11] AnderssonLE, ElfvingT, GolubGH. Solution of biharmonic equations with application to radar imaging. J Comput Appl Math. 1998;94(2):153‐180. · Zbl 0933.65128
[12] MeleshkoVV. Selected topics in the history of the two‐dimensional biharmonic problem. Appl Mech Rev. 2003;56(1):33‐85.
[13] LaiMC, LiuHC. Fast direct solver for the biharmonic equation on a disk and its application to incompressible flows. Appl Math Comput. 2005;164(3):679‐695. · Zbl 1070.65121
[14] GürlebeckK, KählerU. On a boundary value problem of the biharmonic equation. Math Methods Appl Sci. 1997;20(10):867‐883. · Zbl 0878.35037
[15] GüerlebeckK., HabethaK., SprössigW.. Holomorphic Functions in the Plane and n‐Dimensional Space. Birkhäuser Verlag:Basel; 2008. · Zbl 1132.30001
[16] LaméG. Sur les surfaces isothermes dans les corps homogènes en équilibre de temprature. J de Mathématiques Pures et Appliquées. 1837;2:147‐188.
[17] BarberJR. Solid Mechanics and its Applications, Vol. 107. Berlin:Springer; 2003.
[18] FungYC. Foundations of Solid Mechanics. Englewood cliffs NJ:Prentice‐Hall; 1965.
[19] MalvernLE. Introduction to the Mechanics of a Continuous Medium:Prentice‐Hall, Upper Saddle River NJ; 1969.
[20] SaddMH. Elasticity: Theory, Applications and Numerics. Oxford:Elsevier; 2005.
[21] SokolnikoffIS. Mathematical Theory of Elasticity, 1Nd. New York:MacGraw‐Hill; 1958. · Zbl 0082.17603
[22] ShapiroMV, VasilevskiNL. Quaternionic ψ‐hyperholomorphic functions, singular integral operators and boundary value problems. I. ψ‐Hyperholomorphic Function Theory, Complex Variables. 1995;27:17‐46. · Zbl 0847.30033
[23] GrigorievY. Three‐dimensional quaternionic analogue of the Kolosov‐Muskhelishvili formulae. Hypercomplex Analysis: New Perspectives and Applications. Cham:Trends Math., Birkhäuser/Springer; 2014:145‐166. · Zbl 1314.30101
[24] GürlebeckK. ψ‐hyperholomorphic functions and an application to elasticity problems. AIP Conf Proc. 2015;1648(1):440005.
[25] BockS, GürlebeckK, LegatiukD, NguyenHM. ψ‐hyperholomorphic functions and a Kolosov‐Muskhelishvili formula. Math Methods Appl Sci. 2015;38(18):5114‐5123. · Zbl 1338.30043
[26] NguyenHM. Ψ‐hyperholomorphic Function Theory in \(\mathbb{R}^3\): Geometric Mapping Properties and Applications. (Habilitation Thesis), Fakultat Bauingenieurwesen der Bauhaus‐Universitat. Weimar e‐pub.uni‐weimar.de; 2015.
[27] GrigorievY. Their Applications in Three‐Dimensional Elasticity, XXIV ICTAM Regular Quaternionic 21‐26:Montreal, Canada; 2016.
[28] Weisz‐PatraultD, BockS, GürlebeckK. Three‐dimensional elasticity based on quaternion‐valued potentials. Int J Solids Struct. 2014;51:3422‐3430.
[29] GürlebeckK, SprössigW. Quaternionic Analysis and Elliptic Boundary Vaule Problems. Birkhuser AG:Basel; 1990. · Zbl 0850.35001
[30] LiuLW, HongHK. Clifford algebra valued boundary integral equations for three‐dimensional elasticity. Appl Math Modell. 2018;54:246‐267. · Zbl 1480.74028
[31] BockS, GürlebeckK. On a spatial generatization of the Kolosov‐Muskhelishvili formulae. Math Methods Appl Sci. 2009;32:223‐240. · Zbl 1151.74308
[32] ArsenioGM, TaniaMG, RicardoAB, JuanBR. Inframonogenic functions and their applications in three dimensional elasticity theory. Math Methods Appl Sci. 2018;41(10):3622‐3631. · Zbl 1400.30054
[33] EricksenJL. Deformations possible in every isotropic, incompressible, perfectly elastic body. Z Angew Math Phys. 1954;6:466‐489. · Zbl 0059.17509
[34] EricksenJL. Deformations possible in every isotropic, compressible, perfectly elastic material. J Math Phys. 1955;34:126‐128. · Zbl 0064.42105
[35] TruesdellC. The Elements of Continuum Mechanics. New York 1966 iv+279 pp.:Springer‐Verlag New York, Inc. · Zbl 0188.58803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.