×

A thermodynamically consistent physics-informed deep learning material model for short fiber/polymer nanocomposites. (English) Zbl 07867429

Summary: This work proposes a physics-informed deep learning (PIDL)-based constitutive model for investigating the viscoelastic-viscoplastic behavior of short fiber-reinforced nanoparticle-filled epoxies under various ambient conditions. The deep-learning model is trained to enforce thermodynamic principles, leading to a thermodynamically consistent constitutive model. To accomplish this, a long short-term memory network is combined with a feed-forward neural network to predict internal variables required for characterizing the internal dissipation of the nanocomposite materials. In addition, another feed-forward neural network is used to indicate the free-energy function, which enables defining the thermodynamic state of the entire system. The PIDL model is initially developed for the three-dimensional case by generating synthetic data from a classical constitutive model. The model is then trained by extracting the data directly from cyclic loading-unloading experimental tests. Numerical examples show that the PIDL model can accurately predict the mechanical behavior of epoxy-based nanocomposites for different volume fractions of fibers and nanoparticles under various hygrothermal conditions.

MSC:

74-XX Mechanics of deformable solids
92-XX Biology and other natural sciences

Software:

CANN; vCANN

References:

[1] Mousavi, A. A.; Arash, B.; Rolfes, R., Optimization assisted coarse-grained modeling of agglomerated nanoparticle reinforced thermosetting polymers, Polymer, 225, Article 123741 pp., 2021
[2] Arash, B.; Park, H. S.; Rabczuk, T., Coarse-grained model of the J-integral of carbon nanotube reinforced polymer composites, Carbon, 96, 1084-1092, 2016
[3] Fankhänel, J.; Arash, B.; Rolfes, R., Elastic interphase properties of nanoparticle/epoxy nanocomposites: A molecular dynamics study, Composites B, 176, Article 107211 pp., 2019
[4] Chen, W.; Wu, S.; Lei, Y.; Liao, Z.; Guo, B.; Liang, X.; Jia, D., Interfacial structure and performance of rubber/boehmite nanocomposites modified by methacrylic acid, Polymer, 52, 19, 4387-4395, 2011
[5] Jux, M.; Fankhänel, J.; Daum, B.; Mahrholz, T.; Sinapius, M.; Rolfes, R., Mechanical properties of epoxy/boehmite nanocomposites in dependency of mass fraction and surface modification-An experimental and numerical approach, Polymer, 141, 34-45, 2018
[6] Arash, B.; Exner, W.; Rolfes, R., A viscoelastic damage model for nanoparticle/epoxy nanocomposites at finite strain: A multiscale approach, J. Mech. Phys. Solids, 128, 162-180, 2019
[7] Arash, B.; Exner, W.; Rolfes, R., Effect of moisture on the nonlinear viscoelastic fracture behavior of polymer nanocompsites: a finite deformation phase-field model, Eng. Comput., 1-18, 2022
[8] Qi, H. J.; Boyce, M. C., Stress-strain behavior of thermoplastic polyurethanes, Mech. Mater., 37, 8, 817-839, 2005
[9] Poulain, X.; Benzerga, A.; Goldberg, R., Finite-strain elasto-viscoplastic behavior of an epoxy resin: Experiments and modeling in the glassy regime, Int. J. Plast., 62, 138-161, 2014
[10] Bahtiri, B.; Arash, B.; Rolfes, R., Elucidating atomistic mechanisms underlying water diffusion in amorphous polymers: An autonomous basin climbing-based simulation method, Comput. Mater. Sci., 212, Article 111565 pp., 2022
[11] He, Q.; Laurence, D. W.; Lee, C.-H.; Chen, J.-S., Manifold learning based data-driven modeling for soft biological tissues, J. Biomech., 117, Article 110124 pp., 2021
[12] Rocha, I.; van der Meer, F.; Raijmaekers, S.; Lahuerta, F.; Nijssen, R.; Sluys, L. J., Numerical/experimental study of the monotonic and cyclic viscoelastic/viscoplastic/fracture behavior of an epoxy resin, Int. J. Solids Struct., 168, 153-165, 2019
[13] He, X.; He, Q.; Chen, J.-S., Deep autoencoders for physics-constrained data-driven nonlinear materials modeling, Comput. Methods Appl. Mech. Engrg., 385, Article 114034 pp., 2021 · Zbl 1502.74109
[14] Stoffel, M.; Gulakala, R.; Bamer, F.; Markert, B., Artificial neural networks in structural dynamics: A new modular radial basis function approach vs. convolutional and feedforward topologies, Comput. Methods Appl. Mech. Engrg., 364, Article 112989 pp., 2020 · Zbl 1442.74002
[15] Liu, X.; Tian, S.; Tao, F.; Yu, W., A review of artificial neural networks in the constitutive modeling of composite materials, Composites B, 224, Article 109152 pp., 2021
[16] Pled, F.; Desceliers, C.; Zhang, T., A robust solution of a statistical inverse problem in multiscale computational mechanics using an artificial neural network, Comput. Methods Appl. Mech. Engrg., 373, Article 113540 pp., 2021 · Zbl 1506.74488
[17] Pantidis, P.; Mobasher, M. E., Integrated finite element neural network (I-FENN) for non-local continuum damage mechanics, Comput. Methods Appl. Mech. Engrg., 404, Article 115766 pp., 2023 · Zbl 1536.74272
[18] Tao, F.; Liu, X.; Du, H.; Yu, W., Finite element coupled positive definite deep neural networks mechanics system for constitutive modeling of composites, Comput. Methods Appl. Mech. Engrg., 391, Article 114548 pp., 2022 · Zbl 1507.74513
[19] Ghaboussi, J.; Garrett, J.; Wu, X., Knowledge-based modeling of material behavior with neural networks, J. Eng. Mech., 117, 1, 132-153, 1991
[20] Feyel, F., A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua, Comput. Methods Appl. Mech. Eng., 192, 28-30, 3233-3244, 2003 · Zbl 1054.74727
[21] Haghighi, E. M.; Na, S., A single long short-term memory network for enhancing the prediction of path-dependent plasticity with material heterogeneity and anisotropy, 2022, arXiv preprint arXiv:2204.01466
[22] Ghavamian, F.; Simone, A., Accelerating multiscale finite element simulations of history-dependent materials using a recurrent neural network, Comput. Methods Appl. Mech. Engrg., 357, Article 112594 pp., 2019 · Zbl 1442.65142
[23] Siruvuri, S. V.; Budarapu, P.; Paggi, M., Influence of cracks on fracture strength and electric power losses in silicon solar cells at high temperatures: deep machine learning and molecular dynamics approach, Appl. Phys. A, 129, 6, 408, 2023
[24] Bahtiri, B.; Arash, B.; Scheffler, S.; Jux, M.; Rolfes, R., A machine learning-based viscoelastic-viscoplastic model for epoxy nanocomposites with moisture content, 2023, arXiv preprint arXiv:2305.08102
[25] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707, 2019 · Zbl 1415.68175
[26] He, Q.; Tartakovsky, A. M., Physics-informed neural network method for forward and backward advection-dispersion equations, Water Resour. Res., 57, 7, Article e2020WR029479 pp., 2021
[27] He, J.; Abueidda, D.; Al-Rub, R. A.; Koric, S.; Jasiuk, I., A deep learning energy-based method for classical elastoplasticity, Int. J. Plast., 162, Article 103531 pp., 2023
[28] Taç, V.; Rausch, M. K.; Costabal, F. S.; Tepole, A. B., Data-driven anisotropic finite viscoelasticity using neural ordinary differential equations, Comput. Methods Appl. Mech. Engrg., 411, Article 116046 pp., 2023 · Zbl 1539.74005
[29] Klein, D. K.; Roth, F. J.; Valizadeh, I.; Weeger, O., Parametrized polyconvex hyperelasticity with physics-augmented neural networks, Data-Centric Eng., 4, Article e25 pp., 2023
[30] Linka, K.; Kuhl, E., A new family of constitutive artificial neural networks towards automated model discovery, Comput. Methods Appl. Mech. Engrg., 403, Article 115731 pp., 2023 · Zbl 1536.74023
[31] Masi, F.; Stefanou, I.; Vannucci, P.; Maffi-Berthier, V., Thermodynamics-based artificial neural networks for constitutive modeling, J. Mech. Phys. Solids, 147, Article 104277 pp., 2021
[32] Masi, F.; Stefanou, I., Evolution TANN and the identification of internal variables and evolution equations in solid mechanics, J. Mech. Phys. Solids, 174, Article 105245 pp., 2023
[33] Wang, L. M.; Linka, K.; Kuhl, E., Automated model discovery for muscle using constitutive recurrent neural networks, J. Mech. Behav. Biomed. Mater., 145, Article 106021 pp., 2023
[34] Linden, L.; Klein, D. K.; Kalina, K. A.; Brummund, J.; Weeger, O.; Kästner, M., Neural networks meet hyperelasticity: A guide to enforcing physics, J. Mech. Phys. Solids, Article 105363 pp., 2023
[35] F. As’ ad, C. Farhat, A Mechanics-Informed Neural Network Framework for Data-Driven Nonlinear Viscoelasticity, in: AIAA SCITECH 2023 Forum, 2023, p. 0949.
[36] He, X.; Chen, J.-S., Thermodynamically consistent machine-learned internal state variable approach for data-driven modeling of path-dependent materials, Comput. Methods Appl. Mech. Engrg., 402, Article 115348 pp., 2022 · Zbl 1507.74007
[37] Abdolazizi, K. P.; Linka, K.; Cyron, C. J., Viscoelastic constitutive artificial neural networks (vCANNs)-A framework for data-driven anisotropic nonlinear finite viscoelasticity, J. Comput. Phys., 499, Article 112704 pp., 2024 · Zbl 07819054
[38] Rosenkranz, M.; Kalina, K. A.; Brummund, J.; Sun, W.; Kästner, M., Viscoelasticty with physics-augmented neural networks: Model formulation and training methods without prescribed internal variables, 2024, arXiv preprint arXiv:2401.14270
[39] Amos, B.; Xu, L.; Kolter, J. Z., Input convex neural networks, (International Conference on Machine Learning, 2017, PMLR), 146-155
[40] Holzapfel, G. A., Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science, 2002, Kluwer Academic Publishers Dordrecht
[41] Silhavy, M., The Mechanics and Thermodynamics of Continuous Media, 2013, Springer Science & Business Media
[42] Fernandez, M.; Jamshidian, M.; Böhlke, T.; Kersting, K.; Weeger, O., Anisotropic hyperelastic constitutive models for finite deformations combining material theory and data-driven approaches with application to cubic lattice metamaterials, Comput. Mech., 67, 653-677, 2021 · Zbl 07360523
[43] Stoffel, M.; Bamer, F.; Markert, B., Neural network based constitutive modeling of nonlinear viscoplastic structural response, Mech. Res. Commun., 95, 85-88, 2019
[44] Penumadu, D.; Zhao, R., Triaxial compression behavior of sand and gravel using artificial neural networks (ANN), Comput. Geotech., 24, 3, 207-230, 1999
[45] Papadopoulos, V.; Soimiris, G.; Giovanis, D.; Papadrakakis, M., A neural network-based surrogate model for carbon nanotubes with geometric nonlinearities, Comput. Methods Appl. Mech. Engrg., 328, 411-430, 2018 · Zbl 1439.74459
[46] Lefik, M.; Boso, D.; Schrefler, B., Artificial neural networks in numerical modelling of composites, Comput. Methods Appl. Mech. Engrg., 198, 21-26, 1785-1804, 2009 · Zbl 1227.74052
[47] Wang, S.; Teng, Y.; Perdikaris, P., Understanding and mitigating gradient flow pathologies in physics-informed neural networks, SIAM J. Sci. Comput., 43, 5, A3055-A3081, 2021 · Zbl 1530.68232
[48] Cui, T.; Verberne, P.; Meguid, S., Characterization and atomistic modeling of the effect of water absorption on the mechanical properties of thermoset polymers, Acta Mech., 229, 2, 745-761, 2018
[49] Mullins, L.; Tobin, N., Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber, J. Appl. Polym. Sci., 9, 9, 2993-3009, 1965
[50] Mullins, L., Softening of rubber by deformation, Rubber Chem. Technol., 42, 1, 339-362, 1969
[51] Govindjee, S.; Reese, S., A presentation and comparison of two large deformation viscoelasticity models, 1997
[52] Arash, B.; Exner, W.; Rolfes, R., Viscoelastic damage behavior of fiber reinforced nanoparticle-filled epoxy nanocomposites: multiscale modeling and experimental validation, (Acting Principles of Nano-Scaled Matrix Additives for Composite Structures, 2021, Springer), 377-410
[53] Guo, Z.; Peng, X.; Moran, B., Large deformation response of a hyperelastic fibre reinforced composite: Theoretical model and numerical validation, Composites A, 38, 8, 1842-1851, 2007
[54] Guth, E., Theory of filler reinforcement, Rubber Chem. Technol., 18, 3, 596-604, 1945
[55] Bergström, J.; Kurtz, S.; Rimnac, C.; Edidin, A., Constitutive modeling of ultra-high molecular weight polyethylene under large-deformation and cyclic loading conditions, Biomaterials, 23, 11, 2329-2343, 2002
[56] Unger, R.; Exner, W.; Arash, B.; Rolfes, R., Non-linear viscoelasticity of epoxy resins: Molecular simulation-based prediction and experimental validation, Polymer, 180, Article 121722 pp., 2019
[57] Kocis, L.; Whiten, W. J., Computational investigations of low-discrepancy sequences, ACM Trans. Math. Softw., 23, 2, 266-294, 1997 · Zbl 0887.65031
[58] Zhou, J.; Lucas, J. P., Hygrothermal effects of epoxy resin. Part I: the nature of water in epoxy, Polymer, 40, 20, 5505-5512, 1999
[59] Masi, F.; Einav, I., Neural integration for constitutive equations using small data, Comput. Methods Appl. Mech. Engrg., 420, Article 116698 pp., 2024 · Zbl 1536.74265
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.