×

Anisotropic hyperelastic constitutive models for finite deformations combining material theory and data-driven approaches with application to cubic lattice metamaterials. (English) Zbl 07360523

Summary: This work investigates the capabilities of anisotropic theory-based, purely data-driven and hybrid approaches to model the homogenized constitutive behavior of cubic lattice metamaterials exhibiting large deformations and buckling phenomena. The effective material behavior is assumed as hyperelastic, anisotropic and finite deformations are considered. A highly flexible analytical approach proposed by Itskov (Int J Numer Methods Eng 50(8): 1777-1799, 2001) is taken into account, which ensures material objectivity and fulfillment of the material symmetry group conditions. Then, two non-intrusive data-driven approaches are proposed, which are built upon artificial neural networks and formulated such that they also fulfill the objectivity and material symmetry conditions. Finally, a hybrid approach combing the approach of Itskov (Int J Numer Methods Eng 50(8): 1777-1799, 2001) with artificial neural networks is formulated. Here, all four models are calibrated with simulation data of the homogenization of two cubic lattice metamaterials at finite deformations. The data-driven models are able to reproduce the calibration data very well and reproduce the manifestation of lattice instabilities. Furthermore, they achieve superior accuracy over the analytical model also in additional test scenarios. The introduced hyperelastic models are formulated as general as possible, such that they can not only be used for lattice structures, but for any anisotropic hyperelastic material. Further, access to the complete simulation data is provided through the public repository https://github.com/CPShub/sim-data.

MSC:

74-XX Mechanics of deformable solids

Software:

GitHub

References:

[1] Ashby, M., The properties of foams and lattices, Philos Trans R Soc A Math Phys Eng Sci, 364, 1838, 15-30 (2006) · doi:10.1098/rsta.2005.1678
[2] Babaee, S.; Shim, J.; Weaver, JC; Chen, ER; Patel, N.; Bertoldi, K., 3D soft metamaterials with negative poisson’s ratio, Adv Mater, 25, 36, 5044-5049 (2013) · doi:10.1002/adma.201301986
[3] Bertoldi, K.; Vitelli, V.; Christensen, J.; van Hecke, M., Flexible mechanical metamaterials, Nat Rev Mater, 2, 11, 17066 (2017) · doi:10.1038/natrevmats.2017.66
[4] Chen, T.; Mueller, J.; Shea, K., Integrated design and simulation of tunable, multi-state structures fabricated monolithically with multi-material 3D printing, Sci Rep, 7, 45671 (2017) · doi:10.1038/srep45671
[5] Chen, Y.; Qian, F.; Zuo, L.; Scarpa, F.; Wang, L., Broadband and multiband vibration mitigation in lattice metamaterials with sinusoidally-shaped ligaments, Extreme Mech Lett, 17, 24-32 (2017) · doi:10.1016/j.eml.2017.09.012
[6] Coelho, M.; Roehl, D.; Bletzinger, KU, Material model based on NURBS response surfaces, Appl Math Modell, 51, 574-586 (2017) · Zbl 1480.74010 · doi:10.1016/j.apm.2017.06.038
[7] Cohen, N.; McMeeking, RM; Begley, MR, Modeling the non-linear elastic response of periodic lattice materials, Mech Mater, 129, 159-168 (2019) · doi:10.1016/j.mechmat.2018.11.010
[8] Coleman, BD; Noll, W., Material symmetry and thermostatic inequalities in finite elastic deformations, Arch Ration Mech Anal, 15, 2, 87-111 (1964) · Zbl 0123.40703 · doi:10.1007/BF00249520
[9] Cotton, FA, Chemical Applications of Group Theory (1990), New Jersey: Wiley, New Jersey
[10] Damanpack, AR; Bodaghi, M.; Liao, WH, Experimentally validated multi-scale modeling of 3D printed hyper-elastic lattices, Int J Non-Linear Mech, 108, 87-110 (2019) · doi:10.1016/j.ijnonlinmec.2018.10.008
[11] Deshpande, VS; Ashby, MF; Fleck, NA, Foam topology: bending versus stretching dominated architectures, Acta Mater, 49, 6, 1035-1040 (2001) · doi:10.1016/S1359-6454(00)00379-7
[12] Florijn, B.; Coulais, C.; van Hecke, M., Programmable mechanical metamaterials, Phys Rev Lett, 113, 17, 175503 (2014) · doi:10.1103/PhysRevLett.113.175503
[13] Fritzen, F.; Fernández, M.; Larsson, F., On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling, Front Mater, 6, 75 (2019) · doi:10.3389/fmats.2019.00075
[14] Fritzen, F.; Kunc, O., Two-stage data-driven homogenization for nonlinear solids using a reduced order model, Eur J Mech A/Solids, 69, 201-220 (2018) · Zbl 1406.74560 · doi:10.1016/j.euromechsol.2017.11.007
[15] Geers, MGD; Kouznetsova, VG; Matouš, K.; Yvonnet, J., Homogenization methods and multiscale modeling: nonlinear problems. encyclopedia of computational mechanics (2017), New Jersey: John Wiley and Sons Ltd, New Jersey
[16] González, D.; Chinesta, F.; Cueto, E., Learning corrections for hyperelastic models from data, Front Mater, 6, 14 (2019) · doi:10.3389/fmats.2019.00014
[17] González, D.; García-González, A.; Chinesta, F.; Cueto, E., A data-driven learning method for constitutive modeling: application to vascular hyperelastic soft tissues, Materials, 13, 10, 1-17 (2020) · doi:10.3390/ma13102319
[18] Huber, N., Connections between topology and macroscopic mechanical properties of three-dimensional open-pore materials, Front Mater, 5, 69 (2018) · doi:10.3389/fmats.2018.00069
[19] Ibañez, R.; Borzacchiello, D.; Aguado, JV; Abisset-Chavanne, E.; Cueto, E.; Ladeveze, P.; Chinesta, F., Data-driven non-linear elasticity: constitutive manifold construction and problem discretization, Comput Mech, 60, 5, 813-826 (2017) · Zbl 1387.74015 · doi:10.1007/s00466-017-1440-1
[20] Itskov, M., A generalized orthotropic hyperelastic material model with application to imcompressible shells, Int J Numer Methods Eng, 50, 8, 1777-1799 (2001) · Zbl 0997.74006 · doi:10.1002/nme.86
[21] Itskov, M., The derivative with respect to a tensor: some theoretical aspects and applications, ZAMM Zeitschrift Angew Math Mech, 82, 8, 535-544 (2002) · Zbl 1002.15031 · doi:10.1002/1521-4001(200208)
[22] Jamshidian, M.; Boddeti, N.; Rosen, DW; Weeger, O., Multiscale modelling of soft lattice metamaterials: Micromechanical nonlinear buckling analysis, experimental verification, and macroscale constitutive behaviour, Int J Mech Sci, 188, 105956 (2002) · doi:10.1016/j.ijmecsci.2020.105956
[23] Jiang, Y.; Wang, Q., Highly-stretchable 3D-architected mechanical metamaterials, Sci Rep, 6, 1, 34147 (2016) · doi:10.1038/srep34147
[24] Kunc, O.; Fritzen, F., Finite strain homogenization using a reduced basis and efficient sampling, Math Comput Appl, 24, 2, 56 (2019) · doi:10.3390/mca24020056
[25] Le, BA; Yvonnet, J.; He, QC, Computational homogenization of nonlinear elastic materials using neural networks, Int J Numer Methods Eng, 104, 12, 1061-1084 (2015) · Zbl 1352.74266 · doi:10.1002/nme.4953
[26] Lee, JH; Singer, JP; Thomas, EL, Micro-/nanostructured mechanical metamaterials, Adv Mater, 24, 36, 4782-4810 (2012) · doi:10.1002/adma.201201644
[27] Ling, J.; Jones, R.; Templeton, J., Machine learning strategies for systems with invariance properties, J Comput Phys, 318, 22-35 (2016) · Zbl 1349.76124 · doi:10.1016/j.jcp.2016.05.003
[28] Liu, J.; Gu, T.; Shan, S.; Kang, SH; Weaver, JC; Bertoldi, K., Harnessing buckling to design architected materials that exhibit effective negative swelling, Adv Mater, 28, 31, 6619-6624 (2016) · doi:10.1002/adma.201600812
[29] Madireddy, S.; Sista, B.; Vemaganti, K., A Bayesian approach to selecting hyperelastic constitutive models of soft tissue, Comput Methods Appl Mech Eng, 291, 102-122 (2015) · Zbl 1423.74624 · doi:10.1016/j.cma.2015.03.012
[30] Matouš, K.; Geers, MG; Kouznetsova, VG; Gillman, A., A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, J Comput Phys, 330, 192-220 (2017) · doi:10.1016/j.jcp.2016.10.070
[31] Nguyen, LTK; Keip, MA, A data-driven approach to nonlinear elasticity, Comput Struct, 194, 97-115 (2018) · doi:10.1016/j.compstruc.2017.07.031
[32] Pal, RK; Ruzzene, M.; Rimoli, JJ, A continuum model for nonlinear lattices under large deformations, Int J Solids Struct, 96, 300-319 (2016) · doi:10.1016/j.ijsolstr.2016.05.020
[33] Truesdell, C.; Noll, W.; Antman, SS, The non-linear field theories of mechanics (2004), Berlin: Springer, Berlin · Zbl 1068.74002 · doi:10.1007/978-3-662-10388-3
[34] Weeger, O.; Boddeti, N.; Yeung, SK; Kaijima, S.; Dunn, M., Digital design and nonlinear simulation for additive manufacturing of soft lattice structures, Addit Manuf, 25, 39-49 (2019) · doi:10.1016/j.addma.2018.11.003
[35] Yang, H.; Guo, X.; Tang, S.; Liu, WK, Derivation of heterogeneous material laws via data-driven principal component expansions, Comput Mech, 64, 2, 365-379 (2019) · Zbl 1467.74013 · doi:10.1007/s00466-019-01728-w
[36] Yvonnet, J.; Gonzalez, D.; He, QC, Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials, Comput Methods Appl Mech Eng, 198, 33, 2723-2737 (2009) · Zbl 1228.74067 · doi:10.1016/j.cma.2009.03.017
[37] Yvonnet, J.; Monteiro, E.; He, QC, Computational homogenization method and reduced database model for hyperelastic hetereogeneous structures, Int J Multiscale Comput Eng, 11, 3, 201-225 (2013) · doi:10.1615/IntJMultCompEng.2013005374
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.