×

Data-driven anisotropic finite viscoelasticity using neural ordinary differential equations. (English) Zbl 1539.74005

Summary: We develop a fully data-driven model of anisotropic finite viscoelasticity using neural ordinary differential equations as building blocks. We replace the Helmholtz free energy function and the dissipation potential with data-driven functions that a priori satisfy physics-based constraints such as objectivity and the second law of thermodynamics. Our approach enables modeling viscoelastic behavior of materials under arbitrary loads in three-dimensions even with large deformations and large deviations from the thermodynamic equilibrium. The data-driven nature of the governing potentials endows the model with much needed flexibility in modeling the viscoelastic behavior of a wide class of materials. We train the model using stress-strain data from biological and synthetic materials including human brain tissue, blood clots, natural rubber and human myocardium and show that the data-driven method outperforms traditional, closed-form models of viscoelasticity.

MSC:

74-10 Mathematical modeling or simulation for problems pertaining to mechanics of deformable solids
74D10 Nonlinear constitutive equations for materials with memory
74B20 Nonlinear elasticity

References:

[1] Dal, H.; Açıkgöz, K.; Badienia, Y., On the performance of isotropic hyperelastic constitutive models for rubber-like materials: a state of the art review, Appl. Mech. Rev., 73, 2, Article 020802 pp. (2021)
[2] Xiang, Y.; Zhong, D.; Rudykh, S.; Zhou, H.; Qu, S.; Yang, W., A review of physically based and thermodynamically based constitutive models for soft materials, J. Appl. Mech., 87, 11 (2020)
[3] Tac, V.; Costabal, F. S.; Tepole, A. B., Data-driven tissue mechanics with polyconvex neural ordinary differential equations, Comput. Methods Appl. Mech. Engrg., 398, 18 (2022) · Zbl 1507.74236
[4] Tac, V.; Sree, V. D.; Rausch, M. K.; Tepole, A. B., Data-driven modeling of the mechanical behavior of anisotropic soft biological tissue, Eng. Comput., 38, 5, 4167-4182 (2022)
[5] Liu, M.; Liang, L.; Sun, W., A generic physics-informed neural network-based constitutive model for soft biological tissues, Comput. Methods Appl. Mech. Engrg., 372, Article 113402 pp. (2020) · Zbl 1506.74207
[6] Weber, P.; Geiger, J.; Wagner, W., Constrained neural network training and its application to hyperelastic material modeling, Comput. Mech., 68, 5, 1179-1204 (2021) · Zbl 1478.74010
[7] Tac, V.; Linka, K.; Sahli-Costabal, F.; Kuhl, E.; Tepole, A. B., Benchmarks for physics-informed data-driven hyperelasticity (2023), arXiv:2301.10714
[8] Vlassis, N. N.; Ma, R.; Sun, W., Geometric deep learning for computational mechanics Part I: Anisotropic hyperelasticity, Comput. Methods Appl. Mech. Engrg., 371, Article 113299 pp. (2020) · Zbl 1506.74504
[9] Leng, Y.; Tac, V.; Calve, S.; Tepole, A. B., Predicting the mechanical properties of biopolymer gels using neural networks trained on discrete fiber network data, Comput. Methods Appl. Mech. Engrg., 387, Article 114160 pp. (2021) · Zbl 1507.74231
[10] B. Amos, L. Xu, J.Z. Kolter, Input convex neural networks, in: 34th International Conference on Machine Learning, Sydney, Australia, 2017, p. 10.
[11] Chen, R. T.Q.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D., Neural ordinary differential equations (2019), arXiv:1806.07366, [cs, stat]
[12] Klein, D. K.; Fernández, M.; Martin, R. J.; Neff, P.; Weeger, O., Polyconvex anisotropic hyperelasticity with neural networks, J. Mech. Phys. Solids, 159, Article 104703 pp. (2022)
[13] Chen, P.; Guilleminot, J., Polyconvex neural networks for hyperelastic constitutive models: A rectification approach, Mech. Res. Commun., 125, Article 103993 pp. (2022), https://www.sciencedirect.com/science/article/pii/S0093641322001252
[14] As’ad, F.; Avery, P.; Farhat, C., A mechanics-informed artificial neural network approach in data-driven constitutive modeling, Internat. J. Numer. Methods Engrg., 123, 12, 2738-2759 (2022) · Zbl 1528.74114
[15] Linka, K.; Pierre, S. S.; Kuhl, E., Automated model discovery for human brain using Constitutive Artificial Neural Networks (2022)
[16] Linka, K.; Kuhl, E., A new family of Constitutive Artificial Neural Networks towards automated model discovery (2022), arXiv:2210.02202
[17] Flaschel, M.; Kumar, S.; De Lorenzis, L., Unsupervised discovery of interpretable hyperelastic constitutive laws, Comput. Methods Appl. Mech. Engrg., 381, Article 113852 pp. (2021) · Zbl 1506.74051
[18] Thakolkaran, P.; Joshi, A.; Zheng, Y.; Flaschel, M.; De Lorenzis, L.; Kumar, S., NN-EUCLID: Deep-learning hyperelasticity without stress data (2022), arXiv:2205.06664
[19] Salahshoor, H.; Ortiz, M., Model-free data-driven viscoelasticity in the frequency domain (2022), arXiv:2205.06674
[20] Wang, S.; Perdikaris, P., Long-time integration of parametric evolution equations with physics-informed DeepONets, J. Comput. Phys., 475, Article 111855 pp. (2023) · Zbl 07649276
[21] Xu, K.; Tartakovsky, A. M.; Burghardt, J.; Darve, E., Learning viscoelasticity models from indirect data using deep neural networks, Comput. Methods Appl. Mech. Engrg., 387, Article 114124 pp. (2021) · Zbl 1507.74099
[22] Chen, G., Recurrent neural networks (RNNs) learn the constitutive law of viscoelasticity, Comput. Mech., 67, 3, 1009-1019 (2021) · Zbl 1494.74011
[23] Marino, E.; Flaschel, M.; Kumar, S.; De Lorenzis, L., Automated identification of linear viscoelastic constitutive laws with euclid (2022), arXiv preprint arXiv:2212.10969
[24] Flaschel, M.; Kumar, S.; De Lorenzis, L., Automated discovery of generalized standard material models with euclid (2022), arXiv preprint arXiv:2211.04453
[25] Reese, S.; Govindjee, S., A theory of finite viscoelasticity and numerical aspects, Int. J. Solids Struct., 35, 26-27, 3455-3482 (1998) · Zbl 0918.73028
[26] Nguyen, T.; Jones, R.; Boyce, B., Modeling the anisotropic finite-deformation viscoelastic behavior of soft fiber-reinforced composites, Int. J. Solids Struct., 44, 25-26, 8366-8389 (2007) · Zbl 1167.74381
[27] Hartmann, S.; Neff, P., Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility, Int. J. Solids Struct., 40, 11, 2767-2791 (2003) · Zbl 1051.74539
[28] Boyd, S. P.; Vandenberghe, L., Convex Optimization (2004), Cambridge University Press: Cambridge University Press Cambridge, UK; New York · Zbl 1058.90049
[29] Rausch, M. K.; Sugerman, G. P.; Kakaletsis, S.; Dortdivanlioglu, B., Hyper-viscoelastic damage modeling of whole blood clot under large deformation, Biomech. Model. Mechanobiol., 20, 5, 1645-1657 (2021)
[30] Amin, A.; Alam, M.; Okui, Y., An improved hyperelasticity relation in modeling viscoelasticity response of natural and high damping rubbers in compression: Experiments, parameter identification and numerical verification, Mech. Mater., 34, 2, 75-95 (2002)
[31] Budday, S.; Sommer, G.; Haybaeck, J.; Steinmann, P.; Holzapfel, G.; Kuhl, E., Rheological characterization of human brain tissue, Acta Biomater., 60, 315-329 (2017)
[32] Sommer, G.; Schriefl, A. J.; Andrä, M.; Sacherer, M.; Viertler, C.; Wolinski, H.; Holzapfel, G. A., Biomechanical properties and microstructure of human ventricular myocardium, Acta Biomater., 24, 172-192 (2015)
[33] Kumar, A.; Lopez-Pamies, O., On the two-potential constitutive modeling of rubber viscoelastic materials, Comptes Rendus Mecanique, 344, 2, 102-112 (2016)
[34] Kleuter, B.; Menzel, A.; Steinmann, P., Generalized parameter identification for finite viscoelasticity, Comput. Methods Appl. Mech. Engrg., 196, 35-36, 3315-3334 (2007) · Zbl 1173.74321
[35] Loew, P. J.; Peters, B.; Beex, L. A., Rate-dependent phase-field damage modeling of rubber and its experimental parameter identification, J. Mech. Phys. Solids, 127, 266-294 (2019)
[36] Liu, H.; Holzapfel, G. A.; Skallerud, B. H.; Prot, V., Anisotropic finite strain viscoelasticity: Constitutive modeling and finite element implementation, J. Mech. Phys. Solids, 124, 172-188 (2019) · Zbl 1474.74031
[37] Amin, A.; Lion, A.; Sekita, S.; Okui, Y., Nonlinear dependence of viscosity in modeling the rate-dependent response of natural and high damping rubbers in compression and shear: Experimental identification and numerical verification, Int. J. Plast., 22, 9, 1610-1657 (2006) · Zbl 1146.74310
[38] Zhou, J.; Jiang, L.; Khayat, R. E., A micro-macro constitutive model for finite-deformation viscoelasticity of elastomers with nonlinear viscosity, J. Mech. Phys. Solids, 110, 137-154 (2018)
[39] Vernerey, F. J.; Long, R.; Brighenti, R., A statistically-based continuum theory for polymers with transient networks, J. Mech. Phys. Solids, 107, 1-20 (2017)
[40] Ateshian, G. A., Viscoelasticity using reactive constrained solid mixtures, J. Biomech., 48, 6, 941-947 (2015)
[41] Holzapfel, G. A.; Simo, J. C., A new viscoelastic constitutive model for continuous media at finite thermomechanical changes, Int. J. Solids Struct., 33, 20-22, 3019-3034 (1996) · Zbl 0909.73038
[42] Zhang, W.; Capilnasiu, A.; Sommer, G.; Holzapfel, G. A.; Nordsletten, D. A., An efficient and accurate method for modeling nonlinear fractional viscoelastic biomaterials, Comput. Methods Appl. Mech. Engrg., 362, Article 112834 pp. (2020) · Zbl 1439.74083
[43] Freed, A.; Diethelm, K., Fractional calculus in biomechanics: a 3d viscoelastic model using regularized fractional derivative kernels with application to the human calcaneal fat pad, Biomech. Model. Mechanobiol., 5, 4, 203-215 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.