×

Elastoplasticity with linear tetrahedral elements: a variational multiscale method. (English) Zbl 07865132

Summary: We present a computational framework for the simulation of \(J_2\)-elastic/plastic materials in complex geometries based on simple piecewise linear finite elements on tetrahedral grids. We avoid spurious numerical instabilities by means of a specific stabilization method of the variational multiscale kind. Specifically, we introduce the concept of subgrid-scale displacements, velocities, and pressures, approximated as functions of the governing equation residuals. The subgrid-scale displacements/velocities are scaled using an effective (tangent) elastoplastic shear modulus, and we demonstrate the beneficial effects of introducing a subgrid-scale pressure in the plastic regime. We provide proofs of stability and convergence of the proposed algorithms. These methods are initially presented in the context of static computations and then extended to the case of dynamics, where we demonstrate that, in general, naïve extensions of stabilized methods developed initially for static computations seem not effective. We conclude by proposing a dynamic version of the stabilizing mechanisms, which obviates this problematic issue. In its final form, the proposed approach is simple and efficient, as it requires only minimal additional computational and storage cost with respect to a standard finite element relying on a piecewise linear approximation of the displacement field.
{Copyright © 2018 John Wiley & Sons, Ltd.}

MSC:

74Sxx Numerical and other methods in solid mechanics
74Bxx Elastic materials
65Nxx Numerical methods for partial differential equations, boundary value problems
Full Text: DOI

References:

[1] deSaracibarCA, ChiumentiM, ValverdeQ, CerveraM. On the orthogonal subgrid scale pressure stabilization of finite deformation J_2 plasticity. Comput Methods Appl Mech Eng. 2006;195(9‐12):1224‐1251. · Zbl 1175.74080
[2] ChiumentiM, ValverdeQ, de SaracibarCA, CerveraM. A stabilized formulation for incompressible plasticity using linear triangles and tetrahedra. Int J Plasticity. 2004;20(8):1487‐1504. · Zbl 1066.74587
[3] ChiumentiM, ValverdeQ, de SaracibarCA, CerveraM. A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations. Comput Methods Appl Mech Eng. 2002;191(46):5253‐5264. · Zbl 1083.74584
[4] KlaasO, ManiattyA, ShephardMS. A stabilized mixed finite element method for finite elasticity: formulation for linear displacement and pressure interpolation. Comput Methods Appl Mech Eng. 1999;180(1‐2):65‐79. · Zbl 0959.74066
[5] ManiattyAM, LiuY. Stabilized finite element method for viscoplastic flow: formulation with state variable evolution. Int J Numer Meth Eng. 2003;56(2):185‐209. · Zbl 1116.74431
[6] ManiattyAM, LiuY, KlaasO, ShephardMS. Stabilized finite element method for viscoplastic flow: formulation and a simple progressive solution strategy. Comput Methods Appl Mech Eng. 2001;190(35‐36):4609‐4625. · Zbl 1059.74056
[7] ManiattyAM, LiuY, KlaasO, ShephardMS. Higher order stabilized finite element method for hyperelastic finite deformation. Comput Methods Appl Mech Eng. 2002;191(13‐14):1491‐1503. · Zbl 1098.74704
[8] RameshB, ManiattyAM. Stabilized finite element formulation for elastic-plastic finite deformations. Comput Methods Appl Mech Eng. 2005;194(6‐8):775‐800. · Zbl 1112.74536
[9] RossiS, AbboudN, ScovazziG. Implicit finite incompressible elastodynamics with linear finite elements: a stabilized method in rate form. Comput Methods Appl Mech Eng. 2016;311:208‐249. · Zbl 1439.74464
[10] ScovazziG, SongT, ZengX. A velocity/stress mixed stabilized nodal finite element for elastodynamics: analysis and computations with strongly and weakly enforced boundary conditions. Comput Methods Appl Mech Eng. 2017;325:532‐576. · Zbl 1439.74148
[11] ScovazziG, CarnesB, ZengX, RossiS. A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: a dynamic variational multiscale approach. Int J Numer Meth Eng. 2016;106(10):799‐839. · Zbl 1352.74434
[12] ZengX, ScovazziG, AbboudN, ColomèsO, RossiS. A dynamic variational multiscale method for viscoelasticity using linear tetrahedral elements. Int J Numer Meth Eng. 2017;112(13):1951‐2003. · Zbl 07867199
[13] GilAJ, LeeCH, BonetJ, OrtigosaR. A first order hyperbolic framework for large strain computational solid dynamics. Part II: Total Lagrangian compressible, nearly incompressible and truly incompressible elasticity. Comput Methods Appl Mech Eng. 2016;300:146‐181. · Zbl 1425.74016
[14] LiuJ, MarsdenAL. A unified continuum and variational multiscale formulation for fluids, solids, and fluid‐structure interaction. Comput Methods Appl Mech Eng. 2018 (in press).
[15] CerveraM, ChiumentiM, ValverdeQ, de SaracibarCA. Mixed linear/linear simplicial elements for incompressible elasticity and plasticity. Comput Methods Appl Mech Eng. 2003;192(49):5249‐5263. · Zbl 1054.74050
[16] HughesTJR, FrancaLP. A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well‐posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces. Comput Methods Appl Mech Eng. 1987;65(1):85‐96. · Zbl 0635.76067
[17] HughesTJR, FrancaLP, BalestraM. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška‐Brezzi condition: a stable Petrov‐Galerkin formulation of the Stokes problem accommodating equal‐order interpolations. Comput Methods Appl Mech Eng. 1986;59(1):85‐99. · Zbl 0622.76077
[18] FrancaLP, HughesTJ. Two classes of mixed finite element methods. Comput Methods Appl Mech Eng. 1988;69(1):89‐129. · Zbl 0629.73053
[19] MasudA, XiaK. A stabilized mixed finite element method for nearly incompressible elasticity. J Appl Mech. 2005;72(5):711‐720. · Zbl 1111.74548
[20] NakshatralaKB, MasudA, HjelmstadKD. On finite element formulations for nearly incompressible linear elasticity. Comput Mech. 2008;41(4):547‐561. · Zbl 1162.74472
[21] XiaK, MasudA. A stabilized finite element formulation for finite deformation elastoplasticity in geomechanics. Comput Geotech. 2009;36(3):396‐405.
[22] MasudA, TrusterTJ. A framework for residual‐based stabilization of incompressible finite elasticity: stabilized formulations and \(\overline{\boldsymbol{F}}\) methods for linear triangles and tetrahedra. Comput Methods Appl Mech Eng. 2013;267:359‐399. · Zbl 1286.74018
[23] HughesTJR, ScovazziG, FrancaLP. Multiscale and stabilized methods. In: Encyclopedia of Computational Mechanics. Hoboken, NJ: John Wiley & Sons, Ltd; 2004.
[24] HughesTJR. Multiscale phenomena: Green’s functions, the Dirichlet‐to‐Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Eng. 1995;127(1‐4):387‐401. · Zbl 0866.76044
[25] HughesTJR, FeijóoGR, MazzeiL, QuincyJ‐B. The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng. 1998;166(1‐2):3‐24. · Zbl 1017.65525
[26] CodinaR. Stabilization of incompressibility and convection through orthogonal sub‐scales in finite element methods. Comput Methods Appl Mech Eng. 2000;190(13‐14):1579‐1599. · Zbl 0998.76047
[27] HughesTJR, FrancaLP, HulbertGM. A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least‐squares method for advective‐diffusive equations. Comput Methods Appl Mech Eng. 1989;73:173‐189. · Zbl 0697.76100
[28] CerveraM, LafontaineN, RossiR, ChiumentiM. Explicit mixed strain-displacement finite elements for compressible and quasi‐incompressible elasticity and plasticity. Comput Mech. 2016;58(3):511‐532. · Zbl 1398.74315
[29] BonetJ, BurtonA. A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications. Comm Numer Meth Eng. 1998;14(5):437‐449. · Zbl 0906.73060
[30] BonetJ, MarriottH, HassanO. Stability and comparison of different linear tetrahedral formulations for nearly incompressible explicit dynamic applications. Comm Numer Meth Eng. 2001;50(1):119‐133. · Zbl 1082.74547
[31] PusoMA, SolbergJ. A stabilized nodally integrated tetrahedral. Int J Numer Meth Eng. 2006;67(6):841‐867. · Zbl 1113.74075
[32] DohrmannCR, HeinsteinMW, JungJ, KeySW, WitkowskiWR. Node‐based uniform strain elements for three‐node triangular and four‐node tetrahedral meshes. Int J Numer Meth Eng. 2000;47(9):1549‐1568. · Zbl 0989.74067
[33] GeeMW, DohrmannCR, KeySW, WallWA. A uniform nodal strain tetrahedron with isochoric stabilization. Int J Numer Meth Eng. 2009;78(4):429‐443. · Zbl 1183.74275
[34] StenbergR. A family of mixed finite elements for the elasticity problem. Numer Math. 1988;53(5):513‐538. · Zbl 0632.73063
[35] CerveraM, ChiumentiM, BenedettiL, CodinaR. Mixed stabilized finite element methods in nonlinear solid mechanics. Part III: Compressible and incompressible plasticity. Comput Methods Appl Mech Eng. 2015;285:752‐775. · Zbl 1423.74149
[36] CerveraM, ChiumentiM, CodinaR. Mixed stabilized finite element methods in nonlinear solid mechanics. Part I: Formulation. Comput Methods Appl Mech Eng. 2010;199(37‐40):2559‐2570. · Zbl 1231.74404
[37] CerveraM, ChiumentiM, CodinaR. Mixed stabilized finite element methods in nonlinear solid mechanics. Part II: Strain localization. Comput Methods Appl Mech Eng. 2010;199(37‐40):2571‐2589. · Zbl 1231.74405
[38] ChiumentiM, CerveraM, CodinaR. A mixed three‐field finite element formulation for stress accurate analysis including the incompressible limit. Comput Methods Appl Mech Eng. 2015;283:1095‐1116. · Zbl 1423.74871
[39] LafontaineNM, RossiR, CerveraM, ChiumentiM. Explicit mixed strain‐displacement finite element for dynamic geometrically non‐linear solid mechanics. Comput Mech. 2015;55(3):543‐559. · Zbl 1311.74028
[40] AguirreM, GilAJ, BonetJ, CarreñoAA. A vertex centred finite volume Jameson-Schmidt-Turkel (JST) algorithm for a mixed conservation formulation in solid dynamics. J Comput Phys. 2014;259:672‐699. · Zbl 1349.74341
[41] LeeCH, GilAJ, BonetJ. Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics. Comput Struct. 2013;118:13‐38.
[42] LeeCH, GilAJ, BonetJ. Development of a stabilised Petrov-Galerkin formulation for conservation laws in Lagrangian fast solid dynamics. Comput Methods Appl Mech Eng. 2014;268:40‐64. · Zbl 1295.74099
[43] ColellaP, TrangensteinJ. A higher‐order Godunov method for modeling finite deformation in elastic‐plastic solids. Comm Pure Appl Math. 1991;44:41‐100. · Zbl 0714.73027
[44] PemberRB, TrangensteinJA. Numerical algorithms for strong discontinuities in elastic-plastic solids. J Comput Phys. 1992;103(1):63‐89. · Zbl 0779.73080
[45] TrangensteinJA, PemberRB. The Riemann problem for longitudinal motion in an elastic‐plastic bar. SIAM J Sci Stat Comput. 1991;12:180‐207. · Zbl 0714.73028
[46] TrangensteinJA. Second‐order Godunov algorithm for two‐dimensional solid mechanics. Comput Mech. 1994;13:343‐359. · Zbl 0793.73102
[47] BonetJ, GilAJ, LeeCH, AguirreM, OrtigosaR. A first order hyperbolic framework for large strain computational solid dynamics. Part I: Total Lagrangian isothermal elasticity. Comput Methods Appl Mech Eng. 2015;283:689‐732. · Zbl 1423.74010
[48] BonetJ, GilAJ, OrtigosaR. A computational framework for polyconvex large strain elasticity. Comput Methods Appl Mech Eng. 2015;283:1061‐1094. · Zbl 1423.74122
[49] GilAJ, LeeCH, BonetJ, AguirreM. A stabilised Petrov-Galerkin formulation for linear tetrahedral elements in compressible, nearly incompressible and truly incompressible fast dynamics. Comput Methods Appl Mech Eng. 2014;276:659‐690. · Zbl 1423.74883
[50] GilAJ, OrtigosaR. A new framework for large strain electromechanics based on convex multi‐variable strain energies: variational formulation and material characterisation. Comput Methods Appl Mech Eng. 2016;302:293‐328. · Zbl 1425.74024
[51] GilAJ, OrtigosaR, BonetJ. A computational framework for polyconvex large strain electro‐mechanics. Submitted to the Journal of the Mechanics and Physics of Solids. 2014.
[52] HaukeG. Simple stabilizing matrices for the computation of compressible flows in primitive variables. Comput Methods Appl Mech Eng. 2001;190:6881‐6893. · Zbl 0996.76047
[53] HaukeG, HughesTJR. A unified approach to compressible and incompressible flows. Comput Methods Appl Mech Eng. 1994;113:389‐396. · Zbl 0845.76040
[54] HaukeG, HughesTJR. A comparative study of different sets of variables for solving compressible and incompressible flows. Comput Methods Appl Mech Eng. 1998;153:1‐44. · Zbl 0957.76028
[55] HughesTJR, FrancaLP, MalletM. A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier‐Stokes equations and the second law of thermodynamics. Comput Methods Appl Mech Eng. 1986;54:223‐234. · Zbl 0572.76068
[56] HughesTJR, FrancaLP, MalletM. A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time‐dependent multidimensional advective‐diffusive systems. Comput Methods Appl Mech Eng. 1987;63:97‐112. · Zbl 0635.76066
[57] HughesTJR, MalletM. A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective‐diffusive systems. Comput Methods Appl Mech Eng. 1986;58:305‐328. · Zbl 0622.76075
[58] HughesTJR, MalletM. A new finite element formulation for computational fluid dynamics: IV. A discontinuity‐capturing operator for multidimensional advective‐diffusive systems. Comput Methods Appl Mech Eng. 1986;58:329‐336. · Zbl 0587.76120
[59] HughesTJR, MalletM, MizukamiA. A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput Methods Appl Mech Eng. 1986;54:341‐355. · Zbl 0622.76074
[60] ShakibF, HughesTJR. A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space‐time Galerkin/least‐squares algorithms. Comput Methods Appl Mech Eng. 1991;87:35‐58. · Zbl 0760.76051
[61] ShakibF, HughesTJR, JohanZ. A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier‐Stokes equations. Comput Methods Appl Mech Eng. 1991;89:141‐219.
[62] AguirreM, GilA, BonetJ, LeeC. An upwind vertex centred finite volume solver for Lagrangian solid dynamics. J Comput Phys. 2015;300:387‐422. · Zbl 1349.74342
[63] CardiffP, TukovićŽ, JaegerPD, ClancyM, IvankovićA. A Lagrangian cell‐centred finite volume method for metal forming simulation. Int J Numer Meth Eng. 2017;109:1777‐1803. · Zbl 1365.65202
[64] LiX, HanX, PastorM. An iterative stabilized fractional step algorithm for finite element analysis in saturated soil dynamics. Comput Methods Appl Mech Eng. 2003;192(35‐36):3845‐3859. · Zbl 1054.74732
[65] MiraP, PastorM, LiT, LiuX. A new stabilized enhanced strain element with equal order of interpolation for soil consolidation problems. Comput Methods Appl Mech Eng. 2003;192(37‐38):4257‐4277. · Zbl 1181.74138
[66] PastorM, QuecedoM, ZienkiewiczOC. A mixed displacement‐pressure formulation for numerical analysis of plastic failure. Comput Struct. 1997;62(1):13‐23. · Zbl 0910.73063
[67] PastorM, ZienkiewiczOC, LiT, XiaoqingL, HuangM. Stabilized finite elements with equal order of interpolation for soil dynamics problems. Arch Comput Meth Eng. 1999;6(1):3‐33.
[68] ZienkiewiczO, RojekJ, TaylorR, PastorM. Triangles and tetrahedra in explicit dynamic codes for solids. Int J Numer Meth Eng. 1998;43(3):565‐583. · Zbl 0939.74073
[69] OñateE, RojekJ, TaylorRL, ZienkiewiczOC. Finite calculus formulation for incompressible solids using linear triangles and tetrahedra. Int J Numer Meth Eng. 2004;59(11):1473‐1500. · Zbl 1041.74546
[70] RojekJ, OñateE, TaylorRL. CBS‐based stabilization in explicit solid dynamics. Int J Numer Meth Eng. 2006;66(10):1547‐1568. · Zbl 1110.74856
[71] GuoY, OrtizM, BelytschkoT, RepettoEA. Triangular composite finite elements. Int J Numer Meth Eng. 2000;47(1‐3):287‐316. · Zbl 0985.74068
[72] ThoutireddyP, MolinariJF, RepettoEA, OrtizM. Tetrahedral composite finite elements. Int J Numer Meth Eng. 2002;53(6):1337‐1351. · Zbl 1112.74544
[73] PakravanA, KryslP. Mean‐strain 10‐node tetrahedron with energy‐sampling stabilization. Int J Numer Meth Eng. 2017;109:1439‐1460. · Zbl 1378.74009
[74] OnishiY, IidaR, AmayaK. F‐bar aided edge‐based smoothed finite element method using tetrahedral elements for finite deformation analysis of nearly incompressible solids. Int J Numer Meth Eng. 2017;109:1582‐1606. · Zbl 1380.65386
[75] de Souza NetoEA, Andrade PiresFM, OwenDRJ. F‐bar‐based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. Part I: Formulation and benchmarking. Int J Numer Meth Eng. 2005;62(3):353‐383. · Zbl 1179.74159
[76] de Souza NetoEA, PerićD, DutkoM, OwenDRJ. Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int J Solids Struct. 1996;33(20‐22):3277‐3296. · Zbl 0929.74102
[77] de Souza NetoEA, PerićD, HuangGC, OwenDRJ. Remarks on the stability of enhanced strain elements in finite elasticity and elastocplasticity. Comm Numer Meth Eng. 1995;11(11):951‐961. · Zbl 0836.73066
[78] PiresFMA, de Souza NetoEA, de la Cuesta PadillaJL. An assessment of the average nodal volume formulation for the analysis of nearly incompressible solids under finite strains. Comm Numer Meth Eng. 2004;20(7):569‐583. · Zbl 1302.74173
[79] EyckAT, CelikerF, LewA. Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: analytical estimates. Comput Methods Appl Mech Eng. 2008;197(33‐40):2989‐3000. · Zbl 1194.74390
[80] EyckAT, CelikerF, LewA. Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: motivation, formulation, and numerical examples. Comput Methods Appl Mech Eng. 2008;197(45‐48):3605‐3622. · Zbl 1194.74389
[81] EyckAT, LewA. Discontinuous Galerkin methods for non‐linear elasticity. Int J Numer Meth Eng. 2006;67:1204‐1243. · Zbl 1113.74068
[82] EyckAT, LewA. An adaptive stabilization strategy for enhanced strain methods in non‐linear elasticity. Int J Numer Meth Eng. 2010;81(11):1387‐1416. · Zbl 1183.74270
[83] KabariaH, LewAJ, CockburnB. A hybridizable discontinuous Galerkin formulation for non‐linear elasticity. Comput Methods Appl Mech Eng. 2015;283:303‐329. · Zbl 1423.74895
[84] AuricchioF, da VeigaLB, LovadinaC, RealiA. An analysis of some mixed‐enhanced finite element for plane linear elasticity. Comput Methods Appl Mech Eng. 2005;194(27):2947‐2968. · Zbl 1091.74046
[85] KasperEP, TaylorRL. A mixed‐enhanced strain method. Part I: Geometrically linear problems. Comput Struct. 2000;75:237‐250.
[86] KasperEP, TaylorRL. A mixed‐enhanced strain method. Part II: Geometrically nonlinear problems. Comput Struct. 2000;75:252‐260.
[87] TaylorRL. A mixed‐enhanced formulation tetrahedral finite elements. Int J Numer Meth Eng. 2000;47(1‐3):205‐227. · Zbl 0985.74074
[88] ArnoldD, FalkR, WintherR. Differential complexes and stability of finite element methods II: the elasticity complex. In: Compatible Spatial Discretizations. New York, NY: Springer Science+Business Media LLC; 2006:47‐67. The IMA Volumes in Mathematics and its Applications; vol. 142. · Zbl 1119.65399
[89] ArnoldD, FalkR, WintherR. Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math Comp. 2007;76:1699‐1723. · Zbl 1118.74046
[90] ArnoldD, WintherR. Mixed finite elements for elasticity. Numer Math. 2002;92(3):401‐419. · Zbl 1090.74051
[91] ArnoldDN, WintherR. Nonconforming mixed elements for elasticity. Math Models Meth Appl Sci. 2003;13(3):295‐307. · Zbl 1057.74036
[92] ArnoldN, FalkR, WintherR. Differential complexes and stability of finite element methods I. the de Rham complex. In: Compatible Spatial Discretizations. New York, NY: Springer Science+Business Media LLC; 2006:23‐46. The IMA Volumes in Mathematics and Its Applications; vol. 142. · Zbl 1119.65398
[93] ChiH, TalischiC, Lopez‐PamiesO, PaulinoGH. Polygonal finite elements for finite elasticity. Int J Numer Meth Eng. 2015;101:305‐328. · Zbl 1352.74044
[94] ScovazziG. Lagrangian shock hydrodynamics on tetrahedral meshes: a stable and accurate variational multiscale approach. J Comput Phys. 2012;231(24):8029‐8069.
[95] SimoJC, HughesTJR. Computational Inelasticity. Vol. 7. New York, NY: Springer‐Verlag New York; 2006.
[96] BabuškaI. Error‐bounds for finite element method. Numer Math. 1971;16(4):322‐333. · Zbl 0214.42001
[97] BoffiD, BrezziF, FortinM. Mixed Finite Element Methods and Applications. Berlin, Germany: Springer‐Verlag Berlin Heidelberg; 2013. · Zbl 1277.65092
[98] BrezziF, FortinM. Mixed and Hybrid Finite Element Methods. 1st ed. New York, NY: Springer‐Verlag New York; 1991. Springer Series in Computational Mathematics; vol. 15. · Zbl 0788.73002
[99] ErnA, GuermondJL. Theory and Practice of Finite Elements. Vol. 159. New York, NY: Springer New York; 2004. Applied Mathematical Sciences. · Zbl 1059.65103
[100] HerouxMA, BartlettRA, HowleVE, et al. An overview of the Trilinos project. ACM Trans Math Softw (TOMS). 2005;31(3):397‐423. · Zbl 1136.65354
[101] HarariI, HughesTJR. What are C and h?: inequalities for the analysis and design of finite element methods. Comput Methods Appl Mech Eng. 1992;97(2):157‐192. · Zbl 0764.73083
[102] de Souza NetoEA, PerićD, OwenDRJ. Computational Methods for Plasticity: Theory and Applications. New York, NY: John Wiley & Sons; 2011.
[103] HillR. The Mathematical Theory of Plasticity. New York, NY: Oxford University Press; 1998. · Zbl 0923.73001
[104] MarsdenJE, HughesTJR. Mathematical Foundations of Elasticity. 1st ed. New York, NY: Dover Publications; 1994. Dover Civil and Mechanical Engineering. Reprint of the Prentice‐Hall, Inc, Englewood Cliffs, New Jersey, 1983 edition. · Zbl 0545.73031
[105] SimoJC. A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Comput Methods Appl Mech Eng. 1988;66(2):199‐219. · Zbl 0611.73057
[106] SimoJC. A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Part II: Computational aspects. Comput Methods Appl Mech Eng. 1988;68(1):1‐31. · Zbl 0644.73043
[107] SimoJC, ArmeroF. Geometrically non‐linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Meth Eng. 1992;33(7):1413‐1449. · Zbl 0768.73082
[108] SimoJC. Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput Methods Appl Mech Eng. 1992;99(1):61‐112. · Zbl 0764.73089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.