×

A new framework for large strain electromechanics based on convex multi-variable strain energies: variational formulation and material characterisation. (English) Zbl 1425.74024

Summary: Following the recent work of J. Bonet et al. [ibid. 283, 1061–1094 (2015; Zbl 1423.74122)], this paper postulates a new convex multi-variable variational framework for the analysis of Electro Active Polymers (EAPs) in the context of reversible nonlinear electro-elasticity. This extends the concept of polyconvexity [J. M. Ball, Arch. Ration. Mech. Anal. 63, 337–403 (1977; Zbl 0368.73040)] to strain energies which depend on non-strain based variables introducing other physical measures such as the electric displacement. Six key novelties are incorporated in this work. First, a new definition of the electro-mechanical internal energy is introduced expressed as a convex multi-variable function of a new extended set of electromechanical arguments. Crucially, this new definition of the internal energy enables the most accepted constitutive inequality, namely ellipticity, to be extended to the entire range of deformations and electric fields and, in addition, to incorporate the electro-mechanical energy of the vacuum, and hence that for ideal dielectric elastomers, as a degenerate case. Second, a new extended set of variables, work conjugate to those characterising the new definition of multi-variable convexity, is introduced in this paper. Third, both new sets of variables enable the definition of novel extended Hu-Washizu type of mixed variational principles which are presented in this paper for the first time in the context of nonlinear electro-elasticity. Fourth, some simple strategies to create appropriate convex multi-variable energy functionals (in terms of convex multi-variable invariants) by incorporating minor modifications to a priori non-convex multi-variable functionals are also presented. Fifth, a tensor cross product operation [R. de Boer, Vektor- und Tensorrechnung für Ingenieure. Hochschultext. Berlin-Heidelberg-New York: Springer-Verlag (1982; Zbl 0511.73004)] used in [J. Bonet et al., Comput. Methods Appl. Mech. Eng. 283, 689–732 (2015; Zbl 1423.74010)] to facilitate the algebra associated with the adjoint of the deformation gradient tensor is incorporated in the proposed variational electro-mechanical framework, leading to insightful representations of otherwise complex algebraic expressions. Finally, under a characteristic experimental setup in dielectric elastomers, the behaviour of a convex multi-variable constitutive model capturing some intrinsic nonlinear effects such as electrostriction, is numerically studied.

MSC:

74A20 Theory of constitutive functions in solid mechanics
49M15 Newton-type methods
74B20 Nonlinear elasticity
74F15 Electromagnetic effects in solid mechanics

References:

[1] O’Halloran, A.; O’Malley, F.; McHugh, P., A review on dielectric elastomer actuators, technology, applications, and challenges, J. Appl. Phys., 104 (2008)
[2] Pelrine, R. E.; Kornbluh, R. D.; Joseph, J. P., Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation, Sensors Actuators A, 64, 77-85 (1998)
[3] Pelrine, R.; Kornbluh, R.; Pei, Q.; Joseph, J., High-speed electrically actuated elastomers with strain greater than 100
[4] Kofod, G.; Sommer-Larsen, P.; Kornbluh, R.; Pelrine, R., Actuation response of polyacrylate dielectric elastomers, J. Intell. Mater. Syst. Struct., 14, 787-793 (2003)
[6] Li, T.; Keplinger, C.; Baumgartner, R.; Bauer, S.; Yang, W.; Suo, Z., Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability, J. Mech. Phys. Solids, 61, 611-628 (2013)
[7] Chiba, S.; Waki, M.; Wada, T.; Hirakawa, Y.; Masuda, K.; Ikoma, T., Consistent ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artificial muscle generators, Appl. Energy, 104, 497-502 (2013)
[8] Skatulla, S.; Sansour, C.; Arockiarajan, A., A multiplicative approach for nonlinear electro-elasticity, Comput. Methods Appl. Mech. Engrg., 245-246, 243-255 (2012) · Zbl 1354.74074
[9] Dorfmann, A.; Ogden, R. W., Nonlinear electroelasticity, Acta Mech., 174, 167-183 (2005) · Zbl 1066.74024
[10] Dorfmann, A.; Ogden, R., Nonlinear electroelastic deformations, J. Elasticity, 82, 99-127 (2006) · Zbl 1091.74014
[11] Bustamante, R.; Dorfmann, A.; Ogden, R., Nonlinear electroelastostatics: a variational framework, Z. Angew. Math. Phys., 60, 154-177 (2009) · Zbl 1161.74022
[12] Bustamante, R.; Dorfmann, A.; Ogden, R., On electric body forces and Maxwell stresses in nonlinearly electroelastic solids, Internat. J. Engrg. Sci., 47, 1131-1141 (2009) · Zbl 1213.74123
[13] Bustamante, R., Transversely isotropic non-linear electro-active elastomers, Acta Mech., 206, 237-259 (2009) · Zbl 1169.74018
[14] Bustamante, R.; Merodio, J., Constitutive structure in coupled non-linear electro-elasticity: Invariant descriptions and constitutive restrictions, Int. J. Non-Linear Mech., 46, 1315-1323 (2011)
[15] Richards, A. W.; Odegard, G. M., Constitutive modeling of electrostrictive polymers using a hyperelasticity-based approach, J. Appl. Mech., 77 (2009)
[16] McMeeking, R. M.; Landis, C. M., Electrostatic forces and stored energy for deformable dielectric materials, J. Appl. Mech., 72, 581-590 (2008) · Zbl 1111.74551
[17] Suo, Z.; Zhao, X.; Greene, W. H., A nonlinear field theory of deformable dielectrics, J. Mech. Phys. Solids, 56, 467-486 (2008) · Zbl 1171.74345
[18] Itskov, M.; Khiêm, V. N., A polyconvex anisotropic free energy function for electro- and magneto-rheological elastomers, Math. Mech. Solids, 1-12 (2014)
[19] Bustamante, R.; Merodio, J., On simple constitutive restrictions for transversely isotropic nonlinearly elastic materials and isotropic magneto-sensitive elastomers, J. Engrg. Math., 68, 15-26 (2010) · Zbl 1310.74007
[20] Ball, J. M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., 63, 337-403 (1976) · Zbl 0368.73040
[22] Dorfmann, A.; Ogden, R. W., Electroelastic waves in a finitely deformed electroactive material, IMA J. Appl. Math., 75, 603-636 (2010) · Zbl 1202.74043
[23] Siboni, M. H.; Castañeda, P. P., Fiber-constrained, dielectric-elastomer composites: finite-strain response and stability analysis, J. Mech. Phys. Solids, 68, 211-238 (2014) · Zbl 1328.74041
[24] Siboni, M. H.; Avazmohammadi, R.; Castañeda, P. P., Electromechanical instabilities in fiber-constrained, dielectric-elastomer composites subjected to all-around dead-loading, Math. Mech. Solids (2014) · Zbl 1327.74048
[25] Miehe, C.; Vallicotti, D.; Zäh, D., Computational structural and material stability analysis in finite electro-elasto-statics of electro-active materials, Internat. J. Numer. Methods Engrg., 102, 1605-1637 (2015), Nme.4855 · Zbl 1352.74115
[26] Ball, J. M., Energy-minimising configurations in nonlinear elasticity, Arch. Ration. Mech. Anal., 63, 337-403 (1976) · Zbl 0368.73040
[27] Ball, J. M., Geometry, Mechanics and Dynamics, 3-59 (2002), Springer · Zbl 1054.74008
[28] Ball, J. M.; Murat, F., \(W^{1, p}\)-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal., 58, 225-253 (1984) · Zbl 0549.46019
[29] Dacorogna, B., Direct Methods in the Calculus of Variations (2008), Springer · Zbl 1140.49001
[30] Ciarlet, P., Existence theorems in intrinsic nonlinear elasticity, J. Math. Pures Appl., 94, 229-243 (2010) · Zbl 1273.74101
[31] Tallec, P. L., Handbook of Numerical Analysis. Numerical Methods for Solids (1994), North Holland
[32] Schröder, J.; Neff, P.; Balzani, D., A variational approach for materially stable anisotropic hyperelasticity, Int. J. Solids Struct., 42, 4352-4371 (2005) · Zbl 1119.74321
[33] Schröder, J.; Neff, P., Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions, Int. J. Solids Struct., 40, 401-445 (2003) · Zbl 1033.74005
[34] Aguirre, M.; Gil, A. J.; Bonet, J.; Carreño, A. A., A vertex centred finite volume Jameson-Schmidt-Turkel (JST) algorithm for a mixed conservation formulation in solid dynamics, J. Comput. Phys., 259, 672-699 (2014) · Zbl 1349.74341
[35] Schröder, J.; Neff, P.; Ebbing, V., Anisotropic polyconvex energies on the basis of crystallographic motived structural tensors, J. Mech. Phys. Solids, 56, 3486-3506 (2008) · Zbl 1171.74356
[36] Schröder, J.; Neff, P.; Ebbing, V., Polyconvex energies for trigonal, tetragonal and cubic symmetry groups, (IUTAM-Symposium on Variational Concepts with Applications to the Mechanics of Materials: Proceedings of the IUTAM-Syposium (2010))
[37] Schröder, J.; Wriggers, P.; Balzani, D., A new mixed finite element based on different approximations of the minors of deformation tensors, Comput. Methods Appl. Mech. Engrg., 200, 3583-3600 (2011) · Zbl 1239.74012
[38] Schröder, J., Anisotropic polyconvex energies, (Schröder, J.; Neff, P., Poly-, quasi- and rank-one convexity in Applied Mechanics. Poly-, quasi- and rank-one convexity in Applied Mechanics, CISM Courses and Lectures, vol. 516 (2010), Springer-Verlag), 53-105
[39] Bonet, J.; Gil, A. J.; Ortigosa, R., A computational framework for polyconvex large strain elasticity, Comput. Methods Appl. Mech. Engrg., 283, 1061-1094 (2015) · Zbl 1423.74122
[40] Gil, A. J.; Lee, C. H.; Bonet, J.; Ortigosa, R., A first order hyperbolic framework for large strain computational solid dynamics. Part II: Total Lagrangian compressible, nearly incompressible and truly incompressible elasticity, Comput. Methods Appl. Mech. Engrg., 300, 146-181 (2016) · Zbl 1425.74016
[41] Itskov, M.; Aksel, N., A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function, Int. J. Solids Struct., 41, 3833-3848 (2004) · Zbl 1079.74516
[42] Itskov, M.; Ehret, A.; Mavrilas, D., A polyconvex anisotropic strain-energy function for soft collagenous tissues, Biomech. Model. Mechanobiol., 5, 17-26 (2006)
[43] Ehret, A. E.; Itskov, M., A polyconvex hyperelastic model for fiber-reinforced materials in application to soft tissues, J. Mater. Sci., 42, 8853-8863 (2007)
[44] Ortigosa, R.; Gil, A. J.; Bonet, J.; Hesch, C., A computational framework for polyconvex large strain elasticity for geometrically exact beam theory, Comput. Mech. (2015) · Zbl 1359.74041
[45] Rogers, R., Nonlocal variational problems in nonlinear electromagneto-elastostatics, SIAM J. Math. Anal., 19, 1329-1347 (1988) · Zbl 0665.73017
[46] Ortigosa, R.; Gil, A. J., A new framework for large strain electromechanics based on convex multi-variable strain energies: conservation laws and hyperbolicity, Comput. Methods Appl. Mech. Engrg. (2016), submitted for publication · Zbl 1439.74122
[47] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199-259 (1982) · Zbl 0497.76041
[48] Vu, D. K.; Steinmann, P.; Possart, G., Numerical modelling of non-linear electroelasticity, Internat. J. Numer. Methods Engrg., 70, 685-704 (2007) · Zbl 1194.74075
[49] Zhou, J.; Hong, W.; Zhao, X.; Zhang, Z.; Suo, Z., Propagation of instability in dielectric elastomers, Int. J. Solids Struct., 45, 3739-3750 (2008) · Zbl 1169.74399
[50] Vu, D.; Steinmann, P., On 3-D coupled BEM-FEM simulation of nonlinear electro-elastostatics, Comput. Methods Appl. Mech. Engrg., 201-204, 82-90 (2012) · Zbl 1239.74096
[51] Vu, D.; Steinmann, P., A 2-D coupled BEM-FEM simulation of electro-elastostatics at large strain, Comput. Methods Appl. Mech. Engrg., 199, 1124-1133 (2010) · Zbl 1227.74104
[52] Vogel, F.; Bustamante, R.; Steinmann, P., On some mixed variational principles in electro-elastostatics, Int. J. Non-Linear Mech., 47, 341-354 (2012), Nonlinear Continuum Theories
[53] Flanagan, D. P.; Belytschko, T., A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Internat. J. Numer. Methods Engrg., 17, 679-706 (1981) · Zbl 0478.73049
[54] Bonet, J.; Bhargava, P., A uniform deformation gradient hexahedron element with artificial hourglass control, Internat. J. Numer. Methods Engrg., 38, 2809-2828 (1995) · Zbl 0835.73069
[55] Simo, J. C.; Armero, F.; Pister, K. S., Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 51, 177-208 (1985) · Zbl 0554.73036
[56] Stenberg, R., A family of mixed finite elements for elasticity problems, Numer. Math., 48, 513-538 (1988) · Zbl 0632.73063
[57] Simo, J. C.; Armero, F., Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, Internat. J. Numer. Methods Engrg., 33, 1413-1449 (1992) · Zbl 0768.73082
[58] Simo, J. C.; Armero, F.; Taylor, R., Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems, Comput. Methods Appl. Mech. Engrg., 110, 359-386 (1993) · Zbl 0846.73068
[59] Puso, M. A., A highly efficient enhanced assumed strain physically stabilized hexahedral element, Internat. J. Numer. Methods Engrg., 49, 1029-1064 (2000) · Zbl 0994.74075
[60] Auricchio, F.; de Veiga, L. B.; Lovadina, C.; Reali, A., A stability study of some mixed finite elements for large deformation elasticity problems, Comput. Methods Appl. Mech. Engrg., 194, 1075-1092 (2005) · Zbl 1093.74053
[61] Auricchio, F.; de Veiga, L. B.; Lovadina, C.; Reali, A., The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed fems versus nurbs-based approximations, Comput. Methods Appl. Mech. Engrg., 199, 314-323 (2008) · Zbl 1227.74061
[62] Taylor, R. L., A mixed-enhanced formulation for tetrahedral finite elements, Internat. J. Numer. Methods Engrg., 47, 205-227 (2000) · Zbl 0985.74074
[63] Dohrmann, C. R.; Heinstein, M. W.; Jung, J.; Key, S. W.; Witkowski, W. R., Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes, Internat. J. Numer. Methods Engrg., 47, 1549-1568 (2000) · Zbl 0989.74067
[64] Tiehu, Q., Symmetrizing nonlinear elastodynamic system, J. Elasticity, 50, 245-252 (1998) · Zbl 0919.73015
[65] Wagner, D. H., Symmetric-hyperbolic equations of motion for a hyperelastic material, J. Hyperbolic Differ. Equ., 06, 615-630 (2009) · Zbl 1180.35345
[66] Bonet, J.; Wood, R. D., Nonlinear Continuum Mechanics for Finite Element Analysis (2008), Cambridge University Press · Zbl 1142.74002
[67] Gil, A. J.; Lee, C. H.; Bonet, J.; Aguirre, M., A stabilised Petrov-Galerkin formulation for linear tetrahedral elements in compressible, nearly incompressible and truly incompressible fast dynamics, Comput. Methods Appl. Mech. Engrg., 276, 659-690 (2014) · Zbl 1423.74883
[68] Lee, C. H.; Gil, A. J.; Bonet, J., Development of a stabilised Petrov-Galerkin formulation for conservation laws in lagrangian fast solid dynamics, Comput. Methods Appl. Mech. Engrg., 268, 40-64 (2014) · Zbl 1295.74099
[69] Karim, I. A.; Lee, C. H.; Gil, A. J.; Bonet, J., A two-step Taylor-Galerkin formulation for fast dynamics, Eng. Comput., 31, 366-387 (2014)
[70] Scovazzi, G.; Carnes, B.; Zeng, X.; Rossi, S., A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: a dynamic variational multiscale approach, Internat. J. Numer. Methods Engrg. (2015)
[71] Lee, C. H.; Gil, A. J.; Bonet, J., Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics, Comput. Struct., 118, 13-38 (2013)
[72] Aguirre, M.; Gil, A. J.; Bonet, J.; Lee, C. H., An upwind vertex centred finite volume solver for Lagrangian solid dynamics, J. Comput. Phys., 300, 387-422 (2015) · Zbl 1349.74342
[73] Ortigosa, R.; Gil, A. J., A new framework for large strain electromechanics based on convexmulti-variable strain energies: Finite Element discretisation and computational implementation, Comput. Methods Appl. Mech. Engrg., 302, 329-360 (2016) · Zbl 1425.74086
[74] Bonet, J.; Gil, A. J.; Ortigosa, R., On a tensor cross product based formulation of large strain solid mechanics, Int. J. Solids Struct. (2016), in print. http://dx.doi.org/10.1016/j.ijsolstr.2015.12.030
[75] Zhao, X.; Suo, Z., Electrostriction in elastic dielectrics undergoing large deformation, J. Appl. Phys., 104, Article 123530 pp. (2008)
[76] Hill, R., On uniqueness and stability in the theory of finite elastic strain, J. Mech. Phys. Solids, 5, 229-241 (1957) · Zbl 0080.18004
[77] Coleman, B. D.; Noll, W., On the thermostatics of continuous media, Arch. Ration. Mech. Anal., 4, 97-128 (1959) · Zbl 0231.73003
[79] Gonzalez, O.; Stuart, A. M., A First Course in Continuum Mechanics (2008), Cambridge University Press · Zbl 1143.74001
[80] de Boer, R., Vektor- und Tensorrechnung für Ingenieure (1982), Springer-Verlag · Zbl 0511.73004
[81] Bonet, J.; Gil, A. J.; H. Lee, C.; Aguirre, M.; Ortigosa, R., A first order hyperbolic framework for large strain computational solid dynamics—Part I: Total Lagrangian isothermal elasticity, Comput. Methods Appl. Mech. Engrg., 283, 689-732 (2015) · Zbl 1423.74010
[82] Li, B.; Liu, L.; Suo, Z., Extension limit, polarization saturation, and snap-through instability of dielectric elastomers, Internat. J. Numer. Methods Engrg., 2, 59-67 (2011)
[83] Böhlke, C. B.T., Graphical representation of the generalised Hooke’s law, Tech. Mech., 21, 145-158 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.