×

What are \(C\) and \(h\)?: Inequalities for the analysis and design of finite element methods. (English) Zbl 0764.73083

Poincaré-Friedrichs inequalities, inverse estimates and least-squares bounds are characterized as tools for the error analysis and practical design of finite element methods with terms that depend on the mesh parameter. Sharp estimates of the constants of these inequalities are provided, and precise definitions of mesh size that arise naturally in the context of different problems in terms of element geometry are derived.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Douglas, J.; Wang, J., An absolutely stabilized finite element method for the Stokes flow, Math. Comput., 52, 495-508 (1989) · Zbl 0669.76051
[2] Franca, L. P.; Dutra do Carmo, E. G., The Gelerkin gradient least-squares method, Comput. Methods Appl. Mech. Engrg., 74, 41-54 (1989) · Zbl 0699.65077
[3] Franca, L. P.; Frey, S. L.; Hughes, T. J.R., Stabilized finite element methods: I. Application to the advective-diffusive model, Comput. Methods Appl. Mech. Engrg., 95, 253-276 (1992) · Zbl 0759.76040
[4] Franca, L. P.; Hughes, T. J.R., Two classes of mixed finite element methods, Comput. Methods Appl. Engrg., 69, 89-129 (1988) · Zbl 0651.65078
[5] Hughes, T. J.R.; Brezzi, F., On drilling degrees of freedom, Comput. Methods Appl. Mech. Engrg., 72, 105-121 (1989) · Zbl 0691.73015
[6] Hughes, T. J.R.; Brooks, A. N., A multi-dimensional upwind scheme with no crosswind diffusion, (Hughes, T. J.R., Finite Element Methods for Convection Dominated Flows, AMD, Vol. 34 (1979), ASME: ASME New York), 19-35 · Zbl 0423.76067
[7] Hughes, T. J.R.; Franca, L. P.; Hulbert, G. M., A new finite element formulation for computational fluid dynamics: VIII. The Gelerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73, 173-189 (1989) · Zbl 0697.76100
[8] Hughes, T. J.R.; Hulbert, G. M., Space-time finite element methods for elastodynamics: Formulations and error estimates, Comput. Methods Appl. Mech. Engrg., 66, 339-363 (1988) · Zbl 0616.73063
[9] Johnson, C., Streamline diffusion methods for problems in fluid mechanics, (Gallagher, R. H.; Carey, G. F.; Oden, J. T.; Zienkiewicz, O. C., Finite Elements in Fluids, Vol. 6 (1986), Wiley: Wiley Chichester), 251-261
[10] Hughes, T. J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Engrg., 58, 305-328 (1986) · Zbl 0622.76075
[11] Johnson, C.; Nävert, U.; Pitkäranta, J., Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg., 45, 285-312 (1984) · Zbl 0526.76087
[12] Hughes, T. J.R.; Franca, L. P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Bezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accomodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg., 59, 85-99 (1986) · Zbl 0622.76077
[13] Hughes, T. J.R.; Franca, L. P.; Harari, I.; Mallet, M.; Shakib, F.; Spelce, T. E., Finite element methods for high-speed flows: Consistent calculation of boundary flux, (AIAA 25th Aerospace Sciences Meeting. AIAA 25th Aerospace Sciences Meeting, Reno, Nevada. AIAA 25th Aerospace Sciences Meeting. AIAA 25th Aerospace Sciences Meeting, Reno, Nevada, Paper no. 87-0556 (1987))
[14] Hughes, T. J.R.; Shakib, F., Computational aerodynamics and the finite element method, (AIAA 26th Aerospace Sciences Meeting. AIAA 26th Aerospace Sciences Meeting, Reno, Nevada. AIAA 26th Aerospace Sciences Meeting. AIAA 26th Aerospace Sciences Meeting, Reno, Nevada, Paper no. 88-0031 (1988))
[15] Johnson, C.; Saranen, J., Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math. Comput., 47, 1-18 (1986) · Zbl 0609.76020
[16] Hughes, T. J.R., Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations, Internat. J. Numer. Methods Engrg., 7, 1261-1275 (1987) · Zbl 0638.76080
[17] Johnson, C., Numerical Solutions of Partial Differential Equations by the Finite Element Method (1987), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0628.65098
[18] Hughes, T. J.R.; Franca, L. P., A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods Appl. Mech. Engrg., 65, 85-96 (1987) · Zbl 0635.76067
[19] L.P. Franca and R. Stenberg, Error analysis of some Galerkin/least-squares methods for the elasticity equations, SIAM J. Numer. Anal., in press.; L.P. Franca and R. Stenberg, Error analysis of some Galerkin/least-squares methods for the elasticity equations, SIAM J. Numer. Anal., in press. · Zbl 0759.73055
[20] Hughes, T. J.R.; Franca, L. P., A mixed finite element formulation for Reissner-Mindlin plate theory: Uniform convergence of all higher-order spaces, Comput. Methods Appl. Mech. Engrg., 67, 223-240 (1988) · Zbl 0611.73077
[21] Barbosa, H. J.C.; Hughes, T. J.R., The finite element method with Lagrange multipliers on the boundary: Circumventing the Babuška-Brezzi condition, Comput. Methods Appl. Mech. Engrg., 85, 109-128 (1991) · Zbl 0764.73077
[22] Franca, L. P., Analysis and finite element approximation of compressible and incompressible linear isotropic elasticity based upon a variational principle, Comput. Methods Appl. Mech. Engrg., 76, 259-273 (1989) · Zbl 0688.73044
[23] Hughes, T. J.R.; Frezzi, F.; Masud, A.; Harari, I., Finite elements with drilling degrees of freedom: Theory and numerical evaluations, (Gruber, R.; Periaux, J.; Shaw, R. P., Proceedings of the fifth International Symposium on Numerical Methods in Engineering, Vol. 1 (1989), Springer: Springer Berlin), 3-17
[24] Harari, I.; Hughes, T. J.R., Design and analysis of finite element methods for the Helmholtz equation in exterior domains, Appl. Mech. Rev., 43, 366-373 (1990)
[25] Harari, I.; Hughes, T. J.R., A cost comparison of boundary element and finite element methods for problems of time harmonic acoustics, Comput. Methods Appl. Mech. Engrg., 97, 77-102 (1992) · Zbl 0775.76095
[26] Silvester, D. J.; Kechkar, N., Stabilised bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem, Comput. Methods Appl. Mech. Engrg., 79, 71-86 (1990) · Zbl 0706.76075
[27] F. Chalot, T.J.R. Hughes, Z. Johan and F. Shakib, Application of the Galerkin/least-squares formulation to the analysis of hypersonic flows: II. Flow past a double ellipse, Hypersonic Flows for Reentry Problems, in press.; F. Chalot, T.J.R. Hughes, Z. Johan and F. Shakib, Application of the Galerkin/least-squares formulation to the analysis of hypersonic flows: II. Flow past a double ellipse, Hypersonic Flows for Reentry Problems, in press.
[28] Shakib, F.; Hughes, T. J.R.; Johan, Z., A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 89, 141-219 (1991) · Zbl 0838.76040
[29] Bristeau, M. O.; Mallet, M.; Périaux, J.; Rogé, C., Development of finite element methods for compressible Navier-Stokes flow simulations in aerospace design, (AIAA 28th Aerospace Sciences Meeting. AIAA 28th Aerospace Sciences Meeting, Reno, Nevada. AIAA 28th Aerospace Sciences Meeting. AIAA 28th Aerospace Sciences Meeting, Reno, Nevada, Paper no. 90-0403 (1990))
[30] Ferencz, R. M., Element-by-element preconditioning techniques for large-scale, vectorized finite element analysis in nonlinear solid and structural mechanics, (Ph.D. Thesis (1989), Division of Applied Mechanics, Stanford University: Division of Applied Mechanics, Stanford University Stanford, CA)
[31] J.C. Simo and F. Armero, Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes, Internat. J. Numer. Methods Engrg., in press.; J.C. Simo and F. Armero, Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes, Internat. J. Numer. Methods Engrg., in press. · Zbl 0768.73082
[32] Simo, J. C.; Taylor, R. L., Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms, Comput. Methods Appl. Mech. Engrg., 85, 273-310 (1991) · Zbl 0764.73104
[33] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (1987), Prentice Hall: Prentice Hall Englewood Cliffs, NJ · Zbl 0634.73056
[34] Lin, J. I., An element eigenvalue theorem and its application for stable time step, Comput. Methods Appl. Mech. Engrg., 73, 283-294 (1989) · Zbl 0688.73047
[35] Flanagan, D. P.; Belytschko, T., A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Internat. J. Numer. Methods Engrg., 17, 679-706 (1981) · Zbl 0478.73049
[36] Mason, J., Functional Analysis for Application in Solid Mechanics (1985), Elsevier: Elsevier Amsterdam · Zbl 0595.73019
[37] Girault, V.; Raviart, P. A., Finite Element Approximation of the Navier-Stokes Equations (1979), Springer: Springer Berlin · Zbl 0396.65070
[38] Strang, G.; Fix, G. J., An Analysis of the Finite Element Method (1973), Prentice Hall: Prentice Hall Englewood Cliffs, NJ · Zbl 0278.65116
[39] Franca, L. P., New mixed finite element methods, (Ph.D. Thesis (1987), Division of Applied Mechanics, Stanford University: Division of Applied Mechanics, Stanford University Stanford, CA) · Zbl 0651.65078
[40] Mercier, B., (Lectures on Topics in Finite Element Solution of Elliptic Problems (1979), Springer: Springer Heidelberg) · Zbl 0445.65100
[41] Givoli, D.; Keller, J. B., A finite element method for large domains, Comput. Methods Appl. Mech. Engrg., 76, 41-66 (1989) · Zbl 0687.73065
[42] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland: North-Holland Amsterdam · Zbl 0445.73043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.