×

Asymptotic tail properties of Poisson mixture distributions. (English) Zbl 07858746

Summary: Count data are omnipresent in many applied fields, often with overdispersion. With mixtures of Poisson distributions representing an elegant and appealing modelling strategy, we focus here on how the tail behaviour of the mixing distribution is related to the tail of the resulting Poisson mixture. We define five sets of mixing distributions, and we identify for each case whenever the Poisson mixture is in, close to or far from a domain of attraction of maxima. We also characterize how the Poisson mixture behaves similarly to a standard Poisson distribution when the mixing distribution has a finite support. Finally, we study, both analytically and numerically, how goodness-of-fit can be assessed with the inspection of tail behaviour.
© 2023 The Authors. Stat published by John Wiley & Sons Ltd.

MSC:

62-XX Statistics

References:

[1] Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11, R106.
[2] Anderson, C. W. (1970). Extreme value theory for a class of discrete distributions with applications to some stochastic processes. Journal of Applied Probability, 7(1), 99-113. · Zbl 0192.54202
[3] Anderson, C. W., Coles, S. G., & Hüsler, J. (1997). Maxima of Poisson‐like variables and related triangular arrays. The Annals of Applied Probability, 7(4), 953-971. · Zbl 0897.60052
[4] Balkema, A. A., & deHaan, L. (1974). Residual life time at great age. The Annals of Probability, 2(5), 792-804. · Zbl 0295.60014
[5] Bartoszewicz, B. (2005). Modelling the claim count with Poisson regression and negative binomial regression, Innovations in classification, data science, and information systems: Springer Berlin Heidelberg, pp. 103-110. · Zbl 1448.62145
[6] Bingham, N. H., Goldie, C. M., & Teugels, J. L. (1987). Regular variation: Cambridge University Press. · Zbl 0617.26001
[7] Briggs, K. M., Song, L., & Prellberg, T. (2009). A note on the distribution of the maximum of a set of Poisson random variables. arXiv preprint arXiv:0903.4373.
[8] Bulmer, M. G. (1974). On fitting the Poisson lognormal distribution to species‐abundance data. Biometrics, 30, 101. · Zbl 0276.62088
[9] Cline, D. B. H. (1986). Convolution tails, product tails and domains of attraction. Probability Theory and Related Fields, 72, 529-557. · Zbl 0577.60019
[10] Coeurjolly, J. F., & Trépanier, J. R. (2020). The median of a jittered Poisson distribution. Metrika, 83, 837-851. · Zbl 1475.62144
[11] Coles, S. (2001). An introduction to statistical modeling of extreme values: Springer. · Zbl 0980.62043
[12] Feller, W. (1943). On a general class of “contagious” distributions. The Annals of Mathematical Statistics, 14(4), 389-400. · Zbl 0063.01341
[13] Gardes, L., & Girard, S. (2013). Estimation de quantiles extrêmes pour les lois à queue de type Weibull: une synthèse bibliographique. Journal de la Société Française de Statistique, 154(2), 98-118. · Zbl 1316.62064
[14] Gnedenko, B. V. (1943). Sur la distribution limite du terme maximum d’une serie aléatoire. Annals of Mathematics, 44, 423. · Zbl 0063.01643
[15] Greenwood, M., & Yule, G. U. (1920). An inquiry into the nature of frequency distributions representative of multiple happenings with particular reference to the occurrence of multiple attacks of disease or of repeated accidents. Journal of the Royal Statistical Society, 83, 255-279.
[16] Gronau, Q. F., Singmann, H., & Wagenmakers, E. (2020). bridgesampling: An R package for estimating normalizing constants. Journal of Statistical Software, 92(10), 1-29.
[17] Hitz, A., Davis, R., & Samorodnitsky, G. (2017). Discrete extremes. arXiv:1707.05033.
[18] Irwin, J. O. (1968). The generalized Waring distribution applied to accident theory. Journal of the Royal Statistical Society. Series A (General), 131(2), 205-225.
[19] Karlis, D., & Xekalaki, E. (2005). Mixed Poisson distributions. International Statistical Review, 73(1), 35-58. · Zbl 1104.62010
[20] Kimber, A. C. (1983). A note on Poisson maxima. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 63(4), 551-552. · Zbl 0514.60035
[21] Kleiber, C., & Kotz, S. (2003). Statistical size distributions in economics and actuarial sciences: Wiley. · Zbl 1044.62014
[22] Lambert, D. (1992). Zero‐inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34(1), 1-14. · Zbl 0850.62756
[23] Meng, X. L., & Wong, W. H. (1996). Simulating ratios of normalizing constants via a simple identity: A theoretical exploration. Statistica Sinica, 6(4), 831-860. · Zbl 0857.62017
[24] Nadarajah, S., & Mitov, K. (2002). Asymptotics of maxima of discrete random variables. Extremes, 5(3), 287. · Zbl 1035.60032
[25] Nagler, T. (2018). A generic approach to nonparametric function estimation with mixed data. Statistics and Probability Letters, 137, 326-330. · Zbl 1414.62124
[26] Perline, R. (1998). Mixed Poisson distributions tail equivalent to their mixing distributions. Statistics and Probability Letters, 38(3), 229-233. · Zbl 0917.60038
[27] Pickands, J. (1975). Statistical inference using extreme order statistics. The Annals of Statistics, 3(1), 119-131. · Zbl 0312.62038
[28] R Core Team (2021). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R-project.org/
[29] Resnick, S. I. (1987). Extreme values, regular variation and point processes: Springer. · Zbl 0633.60001
[30] Shimura, T. (2012). Discretization of distributions in the maximum domain of attraction. Extremes, 15(3), 299-317. · Zbl 1329.60159
[31] Stan Development Team (2020). RStan: The R interface to Stan. Retrieved from http://mc-stan.org/ R package version 2.21.2.
[32] Stephenson, A. G. (2002). evd: Extreme value distributions. R News, 2(2), 31‐32. Retrieved from https://CRAN.R-project.org/doc/Rnews/
[33] Wenger, S. J., & Freeman, M. C. (2008). Estimating species occurrence, abundance, and detection probability using zero‐inflated distributions. Ecology, 89(10), 2953-2959.
[34] Willmot, G. E. (1990). Asymptotic tail behaviour of Poisson mixtures with applications. Advances in Applied Probability, 22(1), 147-159. · Zbl 0696.60085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.