×

Solutions for time-fractional coupled nonlinear Schrödinger equations arising in optical solitons. (English) Zbl 07851679

Summary: In this work, an efficient novel technique, namely, the \(q\)-homotopy analysis transform method (\(q\)-HATM) is applied to obtain analytical solutions for a system of time-fractional coupled nonlinear Schrödinger (TF-CNLS) equations with the time-fractional derivative taken in the Caputo sense. This system of equations incorporate nonlocality behaviors which cannot be modeled under the framework of classical calculus. With numerous important applications in nonlinear optics, it describes interactions between waves of different frequencies or the same frequency but belonging to different polarizations. We first establish existence and uniqueness of solutions for the considered time-fractional problem via a fixed point argument. To demonstrate the effectiveness and efficiency of the \(q\)-HATM, two cases each of two time-fractional problems are considered. One important feature of the \(q\)-HATM is that it provides reliable algorithms which can be used to generate easily computable solutions for the considered problems in the form of rapidly convergent series. Numerical simulation are provided to capture the behavior of the state variables for distinct values of the fractional order parameter. The results demonstrate that the general response expression obtained by the \(q\)-HATM contains the fractional order parameter which can be varied to obtain other responses. Particularly, as this parameter approaches unity, the responses obtained for the considered fractional equations approaches that of the corresponding classical equations.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
35Q60 PDEs in connection with optics and electromagnetic theory
78A60 Lasers, masers, optical bistability, nonlinear optics
44A10 Laplace transform
35A22 Transform methods (e.g., integral transforms) applied to PDEs
35B10 Periodic solutions to PDEs
35C10 Series solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Morales-Delgado, V. F.; Gómez-Aguilar, J. F.; Taneco-Hernández, M. A.; Baleanu, D., Modeling the fractional non-linear Schrödinger equation via Liouville-Caputo fractional derivative, Optik, 160, 1-7, 2018
[2] Yépez-Martínez, H.; Gómez-Aguilar, J. F.; Baleanu, D., Beta-derivative and sub-equation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion, Optik, 155, 357-365, 2018
[3] Ma, C. Y.; Shiri, B.; Wu, G. C.; Baleanu, D., New fractional signal smoothing equations with short memory and variable order, Optik, 218, Article 164507 pp., 2020
[4] Sun, H. G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. Q., A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64, 213-231, 2018 · Zbl 1509.26005
[5] Yadav, S.; Kumar, D.; Nisar, K. S., A reliable numerical method for solving fractional reaction-diffusion equations, J. King Saud Univ., Sci., 33, Article 101320 pp., 2021
[6] Akinyemi, L.; Iyiola, O. S., A reliable technique to study nonlinear time-fractional coupled Korteweg-de Vries equations, Adv. Differential Equations, 2020, 169, 1-27, 2020 · Zbl 1482.35200
[7] Baleanu, D.; Jajarmi, A.; Sajjadi, S. S.; Asad, J. H., The fractional features of a harmonic oscillator with position-dependent mass, Commun. Theor. Phys., 72, 5, Article 055002 pp., 2020
[8] Rudolf, H., Applications of Fractional Calculus in Physics, 2000, World Scientifc: World Scientifc Singapore · Zbl 0998.26002
[9] Singh, J.; Kumar, D.; Purohit, S. D.; Mishra, A. M.; Bohra, M., An efficient numerical approach for fractional multidimensional diffusion equations with exponential memory, Numer. Methods Partial Differential Equations, 37, 1631-1651, 2020 · Zbl 07776036
[10] Gòmez-Aguilar, J. F., Novel analytical solutions of the fractional Drude model, Optik, 168, 728-740, 2018
[11] Yèpez-Martínez1, H.; Gòmez-Aguilar, J. F.; Atangana, A., First integral method for non-linear differential equations with conformable derivative, Math. Model. Nat. Phenom., 13, 1, 1-22, 2018 · Zbl 1458.35463
[12] Veeresha, P.; Baskonus, H. M.; Gao, W., Strong interacting internal waves in rotating ocean: Novel fractional approach, Axioms, 10, 2, 2021
[13] Baishya, C., Dynamics of a fractional epidemiological model with disease infection in both the populations, Chaos, 31, 2021 · Zbl 1460.92184
[14] Pandey, P.; Kumar, S.; Gómez-Aguilar, J. F.; Baleanu, D., An efficient technique for solving the space-time fractional reaction-diffusion equation in porous media, Chin. J. Phys., 68, 483-492, 2020 · Zbl 07848617
[15] Safare, K. M., A mathematical analysis of ongoing outbreak COVID-19 in India through nonsingular derivative, Numer. Methods Partial Differential Equations, 37, 2, 1282-1298, 2021 · Zbl 07776014
[16] Ullah, M. Z.; Baleanu, D., A new type of equation of motion and numerical method for a harmonic oscillator with left and right fractional derivatives, Chin. J. Phys., 68, 712-722, 2020 · Zbl 07848635
[17] Podlubny, I., Fractional Differential Equations, 1999, Academic: Academic New York · Zbl 0918.34010
[18] Atangana, A.; Baleanu, D., New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20, 2, 763-769, 2016
[19] Veeresha, P.; Prakasha, D. G.; Kumar, S., A fractional model for propagation of classical optical solitons by using nonsingular derivative, Math. Methods Appl. Sci., 1-15, 2020
[20] Ilhan, E.; Veeresha, P.; Baskonus, H. M., Fractional approach for a mathematical model of atmospheric dynamics of CO2 gas with an efficient method, Chaos Solitons Fractals, 152, 2021 · Zbl 1495.86004
[21] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, 2006, Elsevier: Elsevier Amsterdam · Zbl 1092.45003
[22] Caputo, M.; Fabricio, M., A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1, 2, 73-85, 2015
[23] Hasegawa, A.; Tappert, F., Transmission of stationary nonlinear optical pulses in dispersive dielectric fiber. I. Anomalous dispersion, Appl. Phys. Lett., 23, 142-144, 1973
[24] Mollenauer, L. F.; Stolen, R. H.; Gordon, J. P., Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Phys. Rev. Lett., 45, 1095-1098, 1980
[25] Kivshar, Y. S.; Agrawal, G. P., Optical Solitons: From Fibers To Photonic Crystals, 2003, Academic Press: Academic Press San Diego
[26] Kaminow, I. P., Polarization in optical fibers, IEEE J. Quantum Electron., 17, 15-22, 1981
[27] Menyuk, C. R., Nonlinear pulse propagation in birefringence optical fiber, IEEE J. Quantum Electron., 23, 174-176, 1987
[28] Eslami, M., Exact traveling wave solutions to the fractional coupled nonlinear Schrödinger equations, Appl. Math. Comput., 285, 141-148, 2016 · Zbl 1410.35273
[29] Manakov, S. V., On the theory of two-dimensional stationary self focusing of electromagnetic waves, Sov. Phys. JETP, 38, 2, 248-253, 1974
[30] Chow, K. W.; Wong, K. K.Y.; Lam, K., Modulation instabilities in a system of four coupled nonlinear Schrödinger equations, Phys. Lett. A., 372, 4596-4600, 2008 · Zbl 1221.78036
[31] Yu, W.; Liu, W.; Triki, H.; Zhou, Q.; Biswas, A.; Belić, M. R., Control of dark and anti-dark solitons in the (2+1)-dimensional coupled nonlinear Schrödinger equations with perturbed dispersion and nonlinearity in a nonlinear optical system, Nonlinear Dynam., 97, 471-483, 2019 · Zbl 1430.35218
[32] Guo, X.; Xu, M., Some physical applications of fractional Schrödinger equation, J. Math. Phys., 47, 8, Article 082104 pp., 2006 · Zbl 1112.81028
[33] Bhrawy, A.; Doha, E.; Ezz-Eldien, S.; Van Gonder, R. A., A new Jacobi spectral collocation method for solving 1+1 dimensional fractional Schrödinger equations and fractional coupled Schrödinger systems, Eur. Phys. J. Plus, 129, 1-21, 2014
[34] Ran, M.; Zhang, C., Linearized Crank-Nicolson scheme for the nonlinear time-space fractional Schrödinger equations, J. Comput. Appl. Math., 355, 218-231, 2019 · Zbl 1419.65027
[35] Ran, M.; Zhang, C., A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrödinger equations, Commun. Numer. Sci. Numer. Simul., 41, 64-83, 2016 · Zbl 1458.65112
[36] Wang, D. L.; Xiao, A. G.; Yang, W., Crank-nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phys., 242, 670-681, 2013 · Zbl 1297.65100
[37] Wang, D.; Xiao, A. G.; Yang, W., A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations, J. Comput. Phys., 272, 644-655, 2014 · Zbl 1349.65339
[38] Morales-Delgado, V. F.; Gómez-Aguilar, J. F.; Baleanu, D., A new approach to exact optical soliton solutions for the nonlinear Schrödinger equation, Eur. Phys. J. Plus, 133, 189, 2018
[39] Arafa, A. A.; Hagag, A., A new analytic solution of fractional coupled Ramani equation, Chin. J. Phys., 60, 388-406, 2019 · Zbl 07823600
[40] Golmankhaneh, A. K.; Golmankhaneh, A. K., Homotopy perturbation method for solving a system of Schrödinger-kortewegde vriges equations, Rom. Rep. Phys., 63, 609-623, 2011
[41] Gòmez-Aguilar, J. F.; Baleanu, D., Schrödinger equation involving fractional operators with non-singular kernel, J. Electromagn. Waves Appl., 2017
[42] El-Tawil, M. A.; Huseen, S. N., The \(q -\) Homotopy analysis method \(( q -\) HAM), Int. J. Appl. Maths. Mech., 8, 51-75, 2012
[43] Khan, A.; Jamil, M.; Ara, A., Approximate solutions to time-fractional Schrödinger equation via homotopy analysis method, Int. Sch. Res. Notices, 2012 · Zbl 1245.35141
[44] Veeresha, P.; Prakasha, D. G.; Singh, J.; Kumar, D.; Baleanu, D., Fractional Klein-Gordon-Schrödinger equations with Mittag-Leffler memory, Chin. J. Phys., 68, 65-78, 2020
[45] Prakasha, D. G.; Malagi, N. S.; Veeresha, P., New approach for fractional Schrödinger-Boussinesq equations with Mittag-Leffler kernel, Math. Methods Appl. Sci., 1-17, 2020 · Zbl 1482.35257
[46] Swroop, R.; Jagdev, S.; Devendra, K., Numerical study for time-fractional Schrödinger equations arising in quantum mechanics, Nonlinear Eng., 3, 169-177, 2014
[47] Bakkyaraj, T.; Sahadevan, R., Approximate analytical solution of two coupled time-fractional nonlinear Schrödinger equations, Int. J. Appl. Comput. Math., 2, 113-135, 2016 · Zbl 1420.65083
[48] Veeresha, P.; Prakasha, D. G., Solution for fractional Zakharov-Kuznetsov equations by using two reliable techniques, Chin. J. Phys., 60, 313-330, 2019 · Zbl 07823594
[49] Saad, K. M.; AL-Shareef, E. H.F.; Alomari, A. K.; Baleanu, D.; Gómez-Aguilar, J. F., On exact solutions for time-fractional Korteweg-de Vries and Korteweg-de Vries-Burger’s equations using homotopy analysis transform method, Chin. J. Phys., 63, 149-162, 2020 · Zbl 07829561
[50] Liao, S. J., The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems, 1992, Shanghai Jiao Tong Univ, (Ph.D. thesis)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.