×

Linearized Crank-Nicolson scheme for the nonlinear time-space fractional Schrödinger equations. (English) Zbl 1419.65027

Summary: In this paper, a Crank-Nicolson difference scheme is first derived for solving the nonlinear time-space fractional Schrödinger equations. The truncation error and stability of the scheme are discussed in detail. The existence of the numerical solution is shown by the Brouwer fixed point theorem. For improving the calculating efficiency, a three-level linearized difference scheme is also proposed and analyzed. Both schemes are subsequently extended to the nonlinear coupled equations, and some similar results are given and proved. Several numerical experiments are included to verify the accuracy and efficiency of the two types of schemes, and comparison with the related work is presented.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35Q41 Time-dependent Schrödinger equations and Dirac equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Wang, S.; Xu, M., Generalized fractional Schrödinger equation with space-time fractional derivatives, J. Math. Phys., 48, 4, Article 043502 pp. (2007) · Zbl 1137.81328
[2] Dong, J.; Xu, M., Space-time fractional Schrödinger equation with time-independent potentials, J. Math. Anal. Appl., 344, 2, 1005-1017 (2008) · Zbl 1140.81357
[3] Jiang, X. Y., Time-space fractional Schrödinger like equation with a nonlocal term, Eur. Phys. J. Spec. Top., 193, 1, 61-70 (2011)
[4] Liu, Q.; Zeng, F.; Li, C., Finite difference method for time-space fractional Schrödinger equation, Int. J. Comput. Math., 92, 7, 1439-1451 (2015) · Zbl 1325.65124
[5] Sun, Z.; Wu, X., A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56, 2, 193-209 (2006) · Zbl 1094.65083
[6] Yang, Q.; Liu, F.; Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 34, 1, 200-218 (2010) · Zbl 1185.65200
[7] Laskin, N., Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268, 4, 298-305 (2000) · Zbl 0948.81595
[8] Laskin, N., Fractional Schrödinger equation, Phys. Rev. E, 66, 5, Article 056108 pp. (2000)
[9] Guo, X.; Xu, M., Some physical applications of fractional Schrödinger equation, J. Math. Phys., 47, 8, Article 082104 pp. (2006) · Zbl 1112.81028
[10] Naber, M., Time fractional Schrödinger equation, J. Math. Phys., 45, 8, 3339-3352 (2004) · Zbl 1071.81035
[11] Wang, D.; Xiao, A.; Yang, W., Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phys., 242, 670-681 (2013) · Zbl 1297.65100
[12] Wang, P.; Huang, C., A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation, Numer. Algorithms, 69, 3, 625-641 (2014) · Zbl 1325.65127
[13] Zhao, X.; Sun, Z.; Hao, Z., A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional schrödinger equation, SIAM J. Sci. Comput., 36, 6, A2865-A2886 (2014) · Zbl 1328.65187
[14] Ran, M.; Zhang, C., A linearly implicit conservative scheme for the fractional nonlinear Schrödinger equation with wave operator, Int. J. Comput. Math., 93, 7, 1103-1118 (2016) · Zbl 1390.65079
[15] Wei, L.; He, Y.; Zhang, X.; Wang, S., Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation, Finite Elem. Anal. Des., 59, 28-34 (2012)
[16] Garrappa, R.; Moret, I.; Popolizio, M., Solving the time-fractional Schrödinger equation by Krylov projection methods, J. Comput. Phys., 293, 115-134 (2015) · Zbl 1349.65547
[17] Herzallah, M. A.E.; Gepreel, K. A., Approximate solution to the time-space fractional cubic nonlinear Schrödinger equation, Appl. Math. Model., 36, 11, 5678-5685 (2012) · Zbl 1254.65115
[18] Akrivis, G.; Makridakis, C.; Nochetto, R., A posteriori error estimates for the Crank-Nicolson method for parabolic equations, Math. Comp., 75, 254, 511-531 (2006) · Zbl 1101.65094
[19] Chang, Q.; Jia, E.; Sun, W., Difference schemes for solving the generalized nonlinear Schrödinger equation, J. Comput. Phys., 148, 2, 397-415 (1999) · Zbl 0923.65059
[20] Mu, M., A linearized Crank-Nicolson-Galerkin method for the Ginzburg-Landau model, SIAM J. Sci. Comput., 18, 4, 1028-1039 (1997) · Zbl 0894.65046
[21] Çelik, C.; Duman, M., Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231, 4, 1743-1750 (2012) · Zbl 1242.65157
[22] Ran, M.; He, Y., Linearized Crank-Nicolson method for solving the nonlinear fractional diffusion equation with multi-delay, Int. J. Comput. Math., 95, 12, 2458-2470 (2018) · Zbl 1499.65425
[23] Sun, W.; Wang, J., Optimal error analysis of Crank-Nicolson schemes for a coupled nonlinear Schrödinger system in 3D, J. Comput. Appl. Math., 317, 685-699 (2017) · Zbl 1357.65148
[24] Tian, W. Y.; Zhou, H.; Deng, W., A class of second order difference approximations for solving space fractional diffusion equations, Math. Comp., 294, 1703-1727 (2015) · Zbl 1318.65058
[25] Zhang, Y.; Sun, Z.; Wu, H., Error estimates of Crank-Nicolson-type difference schemes for the subdiffusion equation, SIAM J. Numer. Anal., 49, 6, 2302-2322 (2011) · Zbl 1251.65132
[26] Akrivis, G. D., Finite difference discretization of the cubic Schrödinger equation, IMA J. Numer. Anal., 13, 1, 115-124 (1993) · Zbl 0762.65070
[27] Wei, L.; Zhang, X.; Kumar, S.; Yildirim, A., A numerical study based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional coupled Schrödinger system, Comput. Math. Appl., 64, 8, 2603-2615 (2012) · Zbl 1268.65139
[28] Wang, D.; Xiao, A.; Yang, W., Maximum-norm error analysis of a difference scheme for the space fractional CNLS, Appl. Math. Comput., 257, 241-251 (2015) · Zbl 1339.65137
[29] Ran, M.; Zhang, C., A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrödinger equations, Commun. Nonlinear Sci. Numer. Simul., 41, 64-83 (2016) · Zbl 1458.65112
[30] Li, B.; Sun, W., Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media, SIAM J. Numer. Anal., 51, 4, 1959-1977 (2013) · Zbl 1311.76067
[31] Li, D.; Liao, H.; Sun, W.; Wang, J.; Zhang, J., Analysis of \(L 1\)-galerkin FEMs for time fractional nonlinear parabolic problems, Commun. Comput. Phys., 24, 1, 86-103 (2018) · Zbl 1488.65431
[32] Li, D.; Wang, J.; Zhang, J., Unconditionally convergent \(L 1\)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations, SIAM. J. Sci. Comput., 39, 6, A3067-A3088 (2017) · Zbl 1379.65079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.